Cellular senescence (CS) is a state of irreversible cell cycle arrest, and the accumulation of senescent cells contributes to age-associated organismal decline. The detrimental effects of CS are due to the senescence-associated secretory phenotype (SASP), an array of signaling molecules and growth factors secreted by senescent cells that contribute to the sterile inflammation associated with aging tissues. Recent studies, both in vivo and in vitro, have highlighted the heterogeneous nature of the senescence phenotype. Single-cell transcriptomics has revealed that oncogene-induced senescence (OIS) is characterized by the presence of subpopulations of cells expressing different SASP profiles. We have generated a comprehensive dataset via single-cell transcriptional profiling of genetically homogenous clonal cell lines from different forms of senescence, including OIS, replicative senescence, and DNA damage-induced senescence. We identified subpopulations of cells that are common to all three major forms of senescence and show that the expression profiles of these subpopulations are driven by markers formerly identified in individual forms of senescence. These common signatures are characterized by chromatin modifiers, inflammation, extracellular matrix remodeling, and ribosomal protein gene expression (measured at the RNA level). The expression patterns of these subpopulations recapitulate primary and juxtacrine secondary senescence, a phenomenon where a pre-existing (primary) senescent cell induces senescence in a neighboring (secondary) cell through cell-to-cell contact. Hence, our results demonstrate that the formation of juxtacrine secondary populations of cells is common to multiple types of senescence and occurs in competition with primary senescence. Finally, we show that these subpopulations show differential susceptibility to the senolytic agent Navitoclax, suggesting that senolytic agents targeting the apoptotic pathways may be clearing only a subset of senescent cells based on their inflammatory profiles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709454PMC
http://dx.doi.org/10.59368/agingbio.20230008DOI Listing

Publication Analysis

Top Keywords

senescence
13
senescent cells
12
forms senescence
12
single-cell transcriptomics
8
cellular senescence
8
subpopulations cells
8
cells common
8
juxtacrine secondary
8
cells
6
subpopulations
5

Similar Publications

Background: Pharmacoepidemiologic studies assessing drug effectiveness for Alzheimer's disease and related dementias (ADRD) are increasingly popular given the critical need for effective therapies for ADRD. To meet the urgent need for robust dementia ascertainment from real-world data, we aimed to develop a novel algorithm for identifying incident and prevalent dementia in claims.

Method: We developed algorithm candidates by different timing/frequency of dementia diagnosis/treatment to identify dementia from inpatient/outpatient/prescription claims for 6,515 and 3,997 participants from Visits 5 (2011-2013; mean age 75.

View Article and Find Full Text PDF

Background: The presence of multiple comorbid pathologic features in late-onset dementia has been well documented across cohort studies that incorporate autopsy evaluation. It is likely that such mixed pathology potentially confounds the results of interventional trials that are designed to target a solitary pathophysiologic mechanism in Alzheimer's disease and related dementias (ADRD).

Method: The UK ADRC autopsy database was screened for participants who had previously engaged in therapeutic interventional trials for Alzheimer's disease, vascular cognitive impairment, dementia, and/or ADRD prevention trials from 2005 to the present.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Aptah Bio Inc., San Carlos, CA, USA.

Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.

View Article and Find Full Text PDF

Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea, Republic of (South).

Background: The Apolipoprotein E4 isoform (ApoE4), encoded by the APOE gene, stands out as the most influential genetic factor in late-onset Alzheimer's disease (LOAD). The ApoE4 isoform contributes to metabolic and neuropathological abnormalities during brain aging, with a strong correlation observed in APOE4-positive Alzheimer's disease cases between phosphorylated tau burden and amyloid deposition. Despite compelling evidence of APOE-mediated neuroinflammation influencing the progression of tau-mediated neurodegeneration, the molecular mechanisms underlying these phenomena remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!