Renal cell carcinoma (RCC) is considered as a "metabolic disease" due to various perturbations in metabolic pathways that could drive cancer development. Glycine decarboxylase (GLDC) is a mitochondrial enzyme that takes part in the oxidation of glycine to support nucleotide biosynthesis via transfer of one-carbon units. Herein, we aimed to investigate the potential role of GLDC in RCC development. We found that GLDC depletion diminished nucleotide synthesis and promoted reactive oxygen species (ROS) generation to repress RCC progression, which was reversed by repletion of deoxynucleosides. Additionally, and studies revealed that GLDC plays an important role in regulation of proliferation and tumor growth via interferon stimulated gene factor 3 (ISGF3)-mediated pathway. Expressions of interferon regulatory factor 9 (IRF9) and signal transducer and activator of transcription 2 (STAT2) were elevated in GLDC knock-downed cells and decreased in GLDC over-expressed cells. Double knock-down of STAT2 and IRF9 in GLDC-deficient cells rescued GLDC depletion-induced decrease in cell proliferation. Furthermore, GLDC depletion increased cisplatin-and doxorubicin-induced DNA damage through ISGF3 pathway, leading to cell cycle dysregulation and increased mitotic catastrophe. These findings reveal that GLDC regulates RCC progression via ISFG3-mediated pathway and offers a promising strategy for RCC treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705630 | PMC |
http://dx.doi.org/10.7150/ijbs.104458 | DOI Listing |
Int J Biol Sci
January 2025
Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea.
Renal cell carcinoma (RCC) is considered as a "metabolic disease" due to various perturbations in metabolic pathways that could drive cancer development. Glycine decarboxylase (GLDC) is a mitochondrial enzyme that takes part in the oxidation of glycine to support nucleotide biosynthesis via transfer of one-carbon units. Herein, we aimed to investigate the potential role of GLDC in RCC development.
View Article and Find Full Text PDFSci Rep
January 2025
Geriatric Center, Affiliated Hospital of Inner Mongolia Medical University, No.1 Tongdao North Street, Huimin District, Hohhot, 010050, China.
Environ Toxicol
January 2025
Department of Stomatology, Changzhou Second People's Hospital, Changzhou, Jiangsu Province, China.
Glycine decarboxylase (GLDC) has been identified to be dysregulated and plays pivotal roles in various cancers. Besides, studies have suggested that GLDC expression is elevated in oral squamous cell carcinoma (OSCC) and associated with a worse prognosis, but the precise role and molecular mechanism of GLDC in OSCC remain unexplored. The current study first confirmed the high expression of GLDC in OSCC and its correlation with worse survival in patients with OSCC.
View Article and Find Full Text PDFFront Genet
September 2024
Service de Neurologie Pédiatrique, CHU Bordeaux, University Bordeaux, CNRS, INCIA, UMR 5287, NRGen Team, Bordeaux, France.
Poult Sci
December 2024
College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan 410128, China. Electronic address:
The black-bone chicken, known for its high melanin content, holds significant economic value due to this unique trait. Particularly notable is the prominent melanin deposition observed in its breast muscle. However, the molecular mechanisms governing melanin synthesis and deposition in the breast muscle of black-bone chickens remain largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!