While the conformational ensembles of disordered peptides and peptidomimetics are complex and challenging to characterize, they are a critical component in the paradigm connecting macromolecule sequence, structure, and function. In molecules that do not adopt a single predominant conformation, the conformational ensemble contains rich structural information that, if accessible, can provide a fundamental understanding related to desirable functions such as cell penetration of a therapeutic or the generation of tunable enzyme-mimetic architecture. To address the fundamental challenge of describing broad conformational ensembles, we developed a model system of peptidomimetics comprised of polar glycine and hydrophobic -butylglycine to characterize using a suite of analytical techniques. Using replica exchange molecular dynamics atomistic simulations and liquid chromatography coupled to ion mobility spectrometry, we were able to distinguish the conformations of compositionally identical model sequences. However, differences between these model sequences were more challenging to resolve with characterization tools developed for intrinsically disordered proteins and polymers, including double electron-electron resonance (DEER) spectroscopy and diffusion ordered spectroscopy (DOSY) NMR. Finally, we introduce a facile colorimetric assay using immobilized sequences that leverages a solvatochromic probe, Reichardt's dye, to visually reveal conformational trends consistent with the experimental and computational analysis. This rapid colorimetric technique provides a complementary method to characterize the disorder of macromolecules and examine conformational ensembles as an isolated or multiplexed technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709448PMC
http://dx.doi.org/10.1039/D4PY00341ADOI Listing

Publication Analysis

Top Keywords

conformational ensembles
16
compositionally identical
8
model sequences
8
conformational
5
insights conformational
4
ensembles
4
ensembles compositionally
4
identical disordered
4
disordered peptidomimetics
4
peptidomimetics conformational
4

Similar Publications

While the conformational ensembles of disordered peptides and peptidomimetics are complex and challenging to characterize, they are a critical component in the paradigm connecting macromolecule sequence, structure, and function. In molecules that do not adopt a single predominant conformation, the conformational ensemble contains rich structural information that, if accessible, can provide a fundamental understanding related to desirable functions such as cell penetration of a therapeutic or the generation of tunable enzyme-mimetic architecture. To address the fundamental challenge of describing broad conformational ensembles, we developed a model system of peptidomimetics comprised of polar glycine and hydrophobic -butylglycine to characterize using a suite of analytical techniques.

View Article and Find Full Text PDF

Intrinsically disordered proteins or regions (IDPs or IDRs) exist as ensembles of conformations in the monomeric state and can adopt diverse binding modes, making their experimental and computational characterization challenging. Here, we developed Disobind, a deep-learning method that predicts inter-protein contact maps and interface residues for an IDR and a partner protein, leveraging sequence embeddings from a protein language model. Several current methods, in contrast, provide partner-independent predictions, require the structure of either protein, and/or are limited by the MSA quality.

View Article and Find Full Text PDF

Human Interleukin-6 (hIL-6) is a pro inflammatory cytokine that binds to its receptor, IL-6Rα followed by binding to gp130 and subsequent dimerization to form a hexamer signaling complex. A critical inflammation mediator, hIL-6 is associated with a diverse range of diseases and monoclonal antibodies are in clinical use that either target IL-6Rα or hIL-6 to inhibit signaling. Here, we perform high throughput structure-based computational screening using ensemble docking for small molecule antagonists for which the target conformations were taken from 600 ns long molecular dynamics simulations of the apo protein.

View Article and Find Full Text PDF

Cellular chromatin displays heterogeneous structure and dynamics, properties that control diverse nuclear processes. Models invoke phase separation of conformational ensembles of chromatin fibers as a mechanism regulating chromatin organization . Here we combine biochemistry and molecular dynamics simulations to examine, at single base-pair resolution, how nucleosome spacing controls chromatin phase separation.

View Article and Find Full Text PDF

DOPAC as a modulator of α-Synuclein and E46K interactions with membrane: Insights into binding dynamics.

Int J Biol Macromol

January 2025

Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy. Electronic address:

α-Synuclein (Syn) is an intrinsically disordered protein, abundant in presynaptic neurons. It is a constituent of the Lewis Body inclusions as amyloid fibrils, in Parkinson's disease patients. It populates an ensemble of conformations and floats between the free random coil and the membrane-bound α-helical species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!