A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hand Gesture Recognition for Blind Users by Tracking 3D Gesture Trajectory. | LitMetric

Hand gestures provide an alternate interaction modality for blind users and can be supported using commodity smartwatches without requiring specialized sensors. The enabling technology is an accurate gesture recognition algorithm, but almost all algorithms are designed for sighted users. Our study shows that blind user gestures are considerably diferent from sighted users, rendering current recognition algorithms unsuitable. Blind user gestures have high inter-user variance, making learning gesture patterns difcult without large-scale training data. Instead, we design a gesture recognition algorithm that works on a 3D representation of the gesture trajectory, capturing motion in free space. Our insight is to extract a micro-movement in the gesture that is user-invariant and use this micro-movement for gesture classifcation. To this end, we develop an ensemble classifer that combines image classifcation with geometric properties of the gesture. Our evaluation demonstrates a 92% classifcation accuracy, surpassing the next best state-of-the-art which has an accuracy of 82%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707651PMC
http://dx.doi.org/10.1145/3613904.3642602DOI Listing

Publication Analysis

Top Keywords

gesture recognition
12
blind users
8
gesture
8
gesture trajectory
8
recognition algorithm
8
sighted users
8
blind user
8
user gestures
8
micro-movement gesture
8
hand gesture
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!