A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Novel Cell-Penetrating Peptide-Vascular Endothelial Growth Factor Small Interfering Ribonucleic Acid Complex That Mediates the Inhibition of Angiogenesis by Human Umbilical Vein Endothelial Cells and in an Ex Vivo Mouse Aorta Ring Model. | LitMetric

Angiogenesis is mediated by vascular endothelial growth factor (VEGF), a protein that plays a key role in wound healing, inflammatory diseases, cardiovascular processes, ocular diseases, and tumor growth. Indeed, modulation of angiogenesis represents a potential approach to treating cancer and, as such, therapeutic approaches targeting VEGF and its receptors have been widely investigated as part of the broader search for curative interventions. Equally, RNA interference is a powerful tool for treating diseases, but its application as a disease treatment has been limited in part because of a lack of efficient small interfering RNA (siRNA) delivery systems. The purpose of this study was to characterize an amphipathic cell-penetrating peptide, Ara27, and its potential as an effective delivery vehicle as a conjugate with VEGF siRNA (siVEGF). In our study, we demonstrate that exposure of human umbilical vein endothelial cells (HUVECs) with Ara27-siVEGF complexes did not lead to cytotoxicity and can lead to down-regulation of cellular levels of both VEGF mRNA and protein. Moreover, treatment with the Ara27-siVEGF complex attenuates the phosphorylation of VEGFR2, Akt, and ERK in HUVECs and inhibits their capacity for wound healing and tube formation, both of which characteristics reflective of angiogenesis. In addition, we performed an ex vivo study to find that treatment with the Ara27-siVEGF complex inhibits aorta ring sprouting. Furthermore, the complex did not induce immunotoxicity in THP-1 and RAW264.7 cells. Taken together, our studies demonstrate that an Ara27-siVEGF conjugate is efficient for knockdown of VEGF in HUVECs to inhibit angiogenesis, without marked cytotoxic and immunotoxic effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704089PMC
http://dx.doi.org/10.34133/bmr.0120DOI Listing

Publication Analysis

Top Keywords

endothelial growth
8
growth factor
8
small interfering
8
human umbilical
8
umbilical vein
8
vein endothelial
8
endothelial cells
8
aorta ring
8
wound healing
8
treatment ara27-sivegf
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!