Adsorption-based processes are showing substantial potential for carbon capture. Due to the vast space of potential solid adsorbents and their influence on the process performance, the choice of the material is not trivial but requires systematic approaches. In particular, the material choice should be based on the performance of the resulting process. In this work, we present a method for the process-based screening of porous materials for pressure and vacuum swing adsorption. The method is based on an equilibrium process model that incorporates one-dimensional classical density functional theory (1D-DFT) and the PC-SAFT equation of state. Thereby, the presented method can efficiently screen databases of potential adsorbents and identify the best-performing materials as well as the corresponding optimized process conditions for a specific carbon capture application. We apply our method to a point-source carbon capture application at a cement plant. The results show that the process model is crucial to evaluating the performance of adsorbents instead of relying solely on material heuristics. Furthermore, we enhance our approach through multi-objective optimization and demonstrate for materials with high performance that our method is able to capture the trade-offs between two process objectives, such as specific work and purity. The presented method thus provides an efficient screening tool for adsorbents to maximize process performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11701972 | PMC |
http://dx.doi.org/10.1039/d4me00127c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!