A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Galactose oxidase oxidation and glycosidase digestion for glycoRNA analysis. | LitMetric

Galactose oxidase oxidation and glycosidase digestion for glycoRNA analysis.

Anal Methods

Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.

Published: January 2025

Ribonucleic acid (RNA), essential for protein production and immune function, undergoes glycosylation, a process that attaches glycans to RNA, generating unique glycoRNAs. These glycan-coated RNA molecules regulate immune responses and may be related to immune disorders. However, studying them is challenging due to RNA's fragility. Therefore, a robust method for identifying glycoRNA is important. To address this, we optimized parameters for RNA stability, oxidation, and digestion, thereby enriching and identifying glycoRNAs. This breakthrough paves the way for exploring their potential interactions with immune receptors and tumor suppression. Our approach involved investigating factors such as preservation reagent, enzyme buffer, digestion temperature, oxidant, glycosidase, and incubation time. We successfully optimized digestion conditions, achieving efficient cleavage of -linked glycoRNAs at room temperature using 25 mM ammonium bicarbonate, demonstrating the effectiveness of this method. Additionally, RNA preservation in RNAlater at -80 °C allows controlled release of glycoRNAs within hours. While sequential digestion of different glycoRNA types is possible, significant degradation occurs after the first glycosidase step. Therefore, we recommend separate harvesting for each glycoRNA type. We also established RNA-seq analysis for identifying various glycoRNA types, including snoRNAs and tRNAs. The optimized SPCgRNA method paves the way for further research on -glycosylation in health and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4ay02046dDOI Listing

Publication Analysis

Top Keywords

digestion glycorna
8
identifying glycorna
8
glycorna types
8
digestion
5
glycorna
5
rna
5
galactose oxidase
4
oxidase oxidation
4
oxidation glycosidase
4
glycosidase digestion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!