Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ribonucleic acid (RNA), essential for protein production and immune function, undergoes glycosylation, a process that attaches glycans to RNA, generating unique glycoRNAs. These glycan-coated RNA molecules regulate immune responses and may be related to immune disorders. However, studying them is challenging due to RNA's fragility. Therefore, a robust method for identifying glycoRNA is important. To address this, we optimized parameters for RNA stability, oxidation, and digestion, thereby enriching and identifying glycoRNAs. This breakthrough paves the way for exploring their potential interactions with immune receptors and tumor suppression. Our approach involved investigating factors such as preservation reagent, enzyme buffer, digestion temperature, oxidant, glycosidase, and incubation time. We successfully optimized digestion conditions, achieving efficient cleavage of -linked glycoRNAs at room temperature using 25 mM ammonium bicarbonate, demonstrating the effectiveness of this method. Additionally, RNA preservation in RNAlater at -80 °C allows controlled release of glycoRNAs within hours. While sequential digestion of different glycoRNA types is possible, significant degradation occurs after the first glycosidase step. Therefore, we recommend separate harvesting for each glycoRNA type. We also established RNA-seq analysis for identifying various glycoRNA types, including snoRNAs and tRNAs. The optimized SPCgRNA method paves the way for further research on -glycosylation in health and disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4ay02046d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!