Hepatocellular carcinoma (HCC) is an aggressive disease with poor prognosis, necessitating preclinical models for evaluating novel therapies. Large animal models are particularly valuable for assessing locoregional therapies, which are widely employed across HCC stages. This study aimed to develop a large animal HCC model with tailored tumor mutations. The Oncopig, a genetically engineered pig with inducible TP53R167H and KRASG12D, was used in the study. Hepatocytes were isolated from Oncopigs and exposed to Cre recombinase in vitro to create HCC cells, and additional mutations were introduced by CRISPR/Cas9 knockout (KO) of PTEN and CDKN2A genes. These edits increased Oncopig HCC cell proliferation and migration. Autologous HCC cells with these CRISPR edits were implanted into Oncopigs using two approaches. Ultrasound-guided percutaneous liver injections resulted in the development of localized intrahepatic masses, while portal vein injections led to multifocal tumors that regressed over time. Tumors developed by both approaches harbored PTEN and CDKN2A KO mutations. This study demonstrates the feasibility of developing genetically tailored HCC tumors in Oncopigs using somatic cell CRISPR editing and autologous implantation, providing a valuable large animal model for in vivo therapeutic assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dmm.052079DOI Listing

Publication Analysis

Top Keywords

large animal
12
genetically tailored
8
hepatocellular carcinoma
8
oncopigs somatic
8
somatic cell
8
cell crispr
8
crispr editing
8
hcc cells
8
pten cdkn2a
8
hcc
7

Similar Publications

A novel model of central precocious puberty disease: Paternal MKRN3 gene-modified rabbit.

Animal Model Exp Med

January 2025

Guangdong Medical Laboratory Animal Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Background: Makorin ring finger protein 3 gene (MKRN3) gene mutation is the most common genetic cause of central precocious puberty (CPP) in children. Due to the lack of ideal MKRN3-modified animal model (MKRN3-modified mice enter puberty only 4-5 days earlier than normal mice), the related research is limited.

Methods: Therefore, the MKRN3-modified rabbit was developed using CRISPR (clustered regularly interspaced short palindromic repeats) gene editing technology.

View Article and Find Full Text PDF

Large-scale reforestation is promoted as an important strategy to mitigate climate change and biodiversity loss. A persistent challenge for efforts to restore ecosystems at scale is how to accelerate ecological processes, particularly natural regeneration. Yet, despite being recognized as an important barrier to the recovery of diverse plant communities in tropical agricultural landscapes, the impacts of dispersal limitation on natural regeneration in secondary forests-and especially how this changes as these forests grow older-are still poorly studied.

View Article and Find Full Text PDF

To achieve a better understanding of the evolution of the large brain in humans, a comparative analysis of species differences in the brains of extant primate species is crucial, as it allows direct comparisons of the brains. We developed a method to achieve anatomically precise region-to-region homologous brain transformations across species using computational neuroanatomy. Utilizing three-dimensional neuroimaging data from humans (Homo sapiens), chimpanzees (Pan troglodytes), and Japanese macaques (Macaca fuscata), along with the anatomical labels of their respective brains, we aimed to create a cross-species average template brain that preserves neuroanatomical correspondence across species.

View Article and Find Full Text PDF

Chlamydia muridarum (Cm) has reemerged as a moderately prevalent infectious agent in research mouse colonies. Despite its experimental use, few studies evaluate Cm's effects on immunocompetent mice following its natural route of infection. A Cm field isolate was administered (orogastric gavage) to 8-wk-old female BALB/cJ (C) mice.

View Article and Find Full Text PDF

Gastrointestinal immunity and antioxidant defenses may be bolstered in young animals through prenatal immune system stimulation (PIS), but this is largely uninvestigated in swine. This study tested the hypothesis that PIS could regulate offspring's gastrointestinal immune response and oxidative stress profile. To this end, a PIS model was utilized in sows, delivering low-dose LPS during the final third of gestation to target the developing immune system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!