Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Targeted covalent inhibition is a powerful therapeutic modality in the drug discoverer's toolbox. Recent advances in covalent drug discovery, in particular, targeting cysteines, have led to significant breakthroughs for traditionally challenging targets such as mutant KRAS, which is implicated in diverse human cancers. However, identifying cysteines for targeted covalent inhibition is a difficult task, as experimental and in silico tools have shown limited accuracy. Using the recently released CovPDB and CovBinderInPDB databases, we have trained and tested interpretable machine learning (ML) models to identify cysteines that are liable to be covalently modified (i.e., "ligandable" cysteines). We explored myriad physicochemical features (p, solvent exposure, residue electrostatics, etc.) and protein-ligand pocket descriptors in our ML models. Our final logistic regression model achieved a median F score of 0.73 on held-out test sets. When tested on a small sample of proteins, our model also showed reasonable performance, accurately predicting the most ligandable cysteine in most cases. Taken together, these results indicate that we can accurately predict potential ligandable cysteines for targeted covalent drug discovery, privileging cysteines that are more likely to be selective rather than purely reactive. We release this tool to the scientific community as CovCysPredictor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.4c01281 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!