A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recirculatory Solvotaxis of a Nematic Droplet on Water Surface Enabling Miniaturization. | LitMetric

Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g., hexane) is dispensed near a smaller LC drop resting on a soft and slippery surface of a nonsolvent (e.g., water), unique self-organized locomotion in the form of a twin vortex has been observed within the droplets. This phenomenon is driven by the rapid counter diffusion of hexane and LC between the two droplets, resulting in the formation of a pair of vortices within the droplets before instigating a CLI at the three-phase contact line (TPCL) of the LC droplet. Initially, the higher Laplace pressure inside the LC droplet () due to a net pressure gradient, > , drives the LC toward hexane. However, as the volatile solvent droplet shrinks due to rapid evaporation, a flow reversal happens owing to < . Subsequently, the diffusion of hexane into the LC droplet and its subsequent evaporation manifest a periodic oscillatory CLI expansion and retraction at the TPCL, which in turn form periodic finger-like structures. Following this, the fingers with a higher aspect ratio break into an array of miniaturized satellite LC droplets undergoing Rayleigh-Plateau instability (RPI). The observed deviation in the normalized satellite droplet spacing compared to theoretical value affirm the stabilizing influence of LC elasticity in such fingers, where λ and are experimentally calculated droplet spacing and 5CB droplet radius. Control experiments elucidate the specific contributions of capillary, drag, solutal Marangoni, and osmotic forces to the 5CB droplet locomotion phenomena. The experimentally and analytically consistent demonstration also supports and predicts pressure drop-induced droplet velocities as ∼ .

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c04647DOI Listing

Publication Analysis

Top Keywords

droplet
11
volatile solvent
8
diffusion hexane
8
droplet spacing
8
5cb droplet
8
recirculatory solvotaxis
4
solvotaxis nematic
4
nematic droplet
4
droplet water
4
water surface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!