Deciphering progressive lesion areas in breast cancer spatial transcriptomics via TGR-NMF.

Brief Bioinform

School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China.

Published: November 2024

Identifying spatial domains is critical for understanding breast cancer tissue heterogeneity and providing insights into tumor progression. However, dropout events introduces computational challenges and the lack of transparency in methods such as graph neural networks limits their interpretability. This study aimed to decipher disease progression-related spatial domains in breast cancer spatial transcriptomics by developing the three graph regularized non-negative matrix factorization (TGR-NMF). A unitization strategy was proposed to mitigate the impact of dropout events on the computational process, enabling utilization of the complete gene expression count data. By integrating one gene expression neighbor topology and two spatial position neighbor topologies, TGR-NMF was developed for constructing an interpretable low-dimensional representation of spatial transcriptomic data. The progressive lesion area that can reveal the progression of breast cancer was uncovered through heterogeneity analysis. Moreover, several related pathogenic genes and signal pathways on this area were identified by using gene enrichment and cell communication analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbae707DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
progressive lesion
8
cancer spatial
8
spatial transcriptomics
8
spatial domains
8
dropout events
8
gene expression
8
spatial
6
deciphering progressive
4
lesion areas
4

Similar Publications

Pannexin 1 crosstalk with the Hippo pathway in malignant melanoma.

FEBS J

January 2025

Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada.

In this study, we explored the intricate relationship between Pannexin 1 (PANX1) and the Hippo signaling pathway effector, Yes-associated protein (YAP). Analysis of The Cancer Genome Atlas (TCGA) data revealed a significant positive correlation between PANX1 mRNA and core Hippo components, Yes-associated protein 1 [YAP], Transcriptional coactivator with PDZ-binding motif [TAZ], and Hippo scaffold, Ras GTPase-activating-like protein IQGAP1 [IQGAP1], in invasive cutaneous melanoma and breast carcinoma. Furthermore, we demonstrated that PANX1 expression is upregulated in invasive melanoma cell lines and is associated with increased YAP protein levels.

View Article and Find Full Text PDF

Bio-Conjugated Carbon Quantum Dots for Intracellular Uptake and Bioimaging Applications.

J Fluoresc

January 2025

Department of Medical Biotechnology and Stem Cell and Regenerative Medicine, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416 006, India.

Carbon quantum dots (CQDs) demonstrate outstanding biocompatibility and optical properties, making them ideal for monitoring cellular uptake. Due to their ultra-small size (typically < 10 nm) and fluorescent nature, CQDs hold significant potential as nanoparticles for bioimaging and tracking intracellular processes. The study examined the optimization parameters for conjugating calf thymus DNA (Ct-DNA) to CQDs to facilitate Ct-DNA internalization in mouse fibroblast cells (L929) and human breast cancer cells (MCF-7).

View Article and Find Full Text PDF

Central Nervous System Metastases in Breast Cancer.

Curr Treat Options Oncol

January 2025

Breast Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.

Breast cancer metastasizing to the central nervous system (CNS) encompasses two distinct entities: brain metastases involving the cerebral parenchyma and infiltration of the leptomeningeal space, i.e., leptomeningeal disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!