Current fetal alcohol spectrum disorders (FASD) studies primarily focus on alcohol's actions on the fetal brain although respiratory infections are a leading cause of morbidity/mortality in newborns. The limited studies examining the pulmonary adaptations in FASD demonstrate decreased surfactant protein A and alveolar macrophage phagocytosis, impaired differentiation, and increased risk of Group B streptococcal pneumonia with no study examining sexual dimorphism in adaptations. We hypothesized that developmental alcohol exposure in pregnancy will lead to sexually dimorphic fetal lung morphological and immune adaptations. Pregnant rats were orogastrically treated once daily with alcohol (4.5 g/kg, gestational day [GD] 4 to 10, peak BAC, 216 mg/dl; 6.0 g/kg, GD 11 to 20, peak BAC, 289 mg/dl) or 50% maltose dextrin (isocalorically matched pair-fed controls) to control for calories derived from ethanol. Male and female fetal lung RNA from a total of 20 dams were assessed using the TapeStation (Agilent) and Qubit RNA broad-range assay. Samples with RNA Integrity Numbers (RINs) > 8 were prepared using the NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB), xGen Broad-range RNA Library Prep (IDT), and xGen Normalase UDI Primer Plate 2 (IDT). Final libraries were checked for quality and quantity by Qubit hsDNA and LabChip. The samples were sequenced on the Illumina NovaSeq S4 Paired-end 150 bp. Fetal lung tissue were analyzed for histopathological assessments. Mean fetal weight, crown-rump length and placental efficiency of the alcohol-administered rats were significantly lower (P < 0.05) than the pair-fed control pups. Differentially expressed genes indicated a sex-linked gene regulation dichotomy with a significantly higher number of genes altered in the female fetal lungs compared to the male. Network analysis plot of downregulated genes in the females exposed to alcohol in utero showed a negative impact on T cell activation and regulation, T cell differentiation, decrease in CD8 T cell number etc. The most altered genes were Cd8b, Ccl25, Cd3e, Cd27, Cd247, Cd3d, Ccr9, Cd2, Cd8a and were decreased by a log2fold change of > 2 (P < 0.05) in the female fetal lungs. KEGG analyses showed that male and female fetal lungs had downregulated genes associated with development and mitosis, whereas the females alone showed dysregulation of T cell genes. Comparison of gross appearance and histopathologic morphology showed that the developing lungs of both male and female fetal pups, displayed stunted differentiation, were relatively hypoplastic, and displayed a diminution of alveolar size and air spaces. Similarly, in both sexes, decreased alveolar capillarization was also evident in the alcohol-exposed fetal lungs. These data provide novel information in a growing area focused on alcohol effects on the offspring lung and its influence on appropriate fetal/neonatal immune responses and highlights the importance of examining sexual dimorphism in developmental adaptations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s12931-025-03094-z | DOI Listing |
Case Rep Obstet Gynecol
December 2024
Department of Obstetrics and Gynecology, Jimma University School of Medicine, Jimma, Ethiopia.
Fetal limb anomaly presentation varies greatly. It can present as amelia (complete absence of skeletal part of one or more limb), meromelia (partial absence of skeletal part of one or more limb), phocomelia (only rudimentary limb formed), and minor limb disorders like polydactyly. The complete absence of the four fetal limbs is extremely rare.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, 275 E Hancock St, Rm 195, Detroit, MI, 48201, USA.
Current fetal alcohol spectrum disorders (FASD) studies primarily focus on alcohol's actions on the fetal brain although respiratory infections are a leading cause of morbidity/mortality in newborns. The limited studies examining the pulmonary adaptations in FASD demonstrate decreased surfactant protein A and alveolar macrophage phagocytosis, impaired differentiation, and increased risk of Group B streptococcal pneumonia with no study examining sexual dimorphism in adaptations. We hypothesized that developmental alcohol exposure in pregnancy will lead to sexually dimorphic fetal lung morphological and immune adaptations.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician Kulakov V.I., 117997 Moscow, Russia.
Despite the increasing number of placenta accreta spectrum (PAS) cases in recent years, its impact on neonatal outcomes and respiratory morbidity, as well as the underlying pathogenetic mechanism, has not yet been extensively studied. Moreover, no study has yet demonstrated the effectiveness of antenatal corticosteroid therapy (CT) for the prevention of respiratory distress syndrome (RDS) in newborns of mothers with PAS at the molecular level. In this regard, microRNA (miRNA) profiling by small RNA deep sequencing and quantitative real-time PCR was performed on 160 blood plasma samples from preterm infants (gestational age: 33-36 weeks) and their mothers who had been diagnosed with or without PAS depending on the timing of the antenatal RDS prophylaxis.
View Article and Find Full Text PDFJ Clin Med
December 2024
Northwell, New Hyde Park, NY 11040, USA.
Several social vulnerability index (SVI) components have been associated with adverse obstetrical outcomes and provider bias. The objective of this study is to assess whether betamethasone administration timing among patients at risk for preterm birth differs by social vulnerability index. A multicenter retrospective cohort study of pregnant people at a large academic healthcare system between January 2019 and January 2023.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Biostatistics and Computational Biology Branch (BCBB), National Institute of Environmental Health Sciences (NIEHS), NIH, Durham, NC 27709, USA.
Background: Emerging literature indicates that the microbiome and its byproducts, such as short-chain fatty acids (SCFAs), play an important role in childhood diseases such as allergies and asthma. Specifically, there is evidence suggesting that SCFAs play a critical role in fetal immunoprogramming during the late saccular phase of fetal lung development. An increase in acetate during the late saccular phase is known to play a critical role in inhibiting histone deacetylases (HDACs), resulting in a cascade of events, including Treg immune regulation, involved in fetal immunoprogramming, and reduction in the asthma phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!