Clear cell renal cell carcinoma (ccRCC) is a globally severe cancer with an unfavorable prognosis. PANoptosis, a form of cell death regulated by PANoptosomes, plays a role in numerous cancer types. However, the specific roles of genes associated with PANoptosis in the development and advancement of ccRCC remain unclear. Our study developed a risk model utilizing three PANoptosis-associated genes (Caspase 4 (CASP4), TLR3, and CASP5). This model demonstrated a high degree of precision in predicting the prognosis for patients with ccRCC. ccRCC patients in the high-risk group had the strongest immune cell activity, experiencing immune evasion, and might potentially derive advantages from treatment involving combined immune checkpoint inhibitors. CASP5 was highly expressed in ccRCC tissues by RT-qPCR, western blotting, and immunofluorescence. Stable CASP5 knockdown cell lines were constructed by lentivirus in vitro transfection technique. Reducing CASP5 level suppressed the growth, migration, and invasion of ccRCC cells, while encouraging cell apoptosis. In addition, the results of in vivo tumorigenesis experiments showed that down-regulating CASP5 expression inhibited the tumorigenic ability of 786-O cells. Together, the innovative risk model using PANoptosis-associated genes effectively forecasts the tumor microenvironment and survival rates for ccRCC, offering a novel approach to the early, precise diagnosis of ccRCC and the advancement of personalized treatment strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s12935-024-03630-9 | DOI Listing |
Cancer Cell Int
January 2025
Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, 116044, China.
Clear cell renal cell carcinoma (ccRCC) is a globally severe cancer with an unfavorable prognosis. PANoptosis, a form of cell death regulated by PANoptosomes, plays a role in numerous cancer types. However, the specific roles of genes associated with PANoptosis in the development and advancement of ccRCC remain unclear.
View Article and Find Full Text PDFCell Death Dis
January 2025
Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Doxorubicin, a representative drug of the anthracycline class, is widely used in cancer treatment. However, Doxorubicin-induced cardiotoxicity (DIC) presents a significant challenge in its clinical application. Mitochondrial dysfunction plays a central role in DIC, primarily through disrupting mitochondrial dynamics.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Pathology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.
J Inflamm Res
December 2024
Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 40014, People's Republic of China.
Purpose: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease. PANoptosis, a unique inflammatory programmed cell death, it manifests as the simultaneous activation of signaling markers for pyroptosis, apoptosis, and necroptosis. However, research on the role of PANoptosis in the development of IPF is currently limited.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China.
Hepatocellular carcinoma (HCC) represents the most prevalent form of primary liver cancer and has a high mortality rate. Caspase-8 plays a pivotal role in an array of cellular signaling pathways and is essential for the governance of programmed cell death mechanisms, inflammatory responses, and the dynamics of the tumor microenvironment. Dysregulation of caspase-8 is intricately linked to the complex biological underpinnings of HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!