A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Role of T cell metabolism in brain tumor development: a genetic and metabolic approach. | LitMetric

Role of T cell metabolism in brain tumor development: a genetic and metabolic approach.

BMC Neurol

Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.

Published: January 2025

Background: Malignant brain tumors are among the most lethal cancers. Recent studies emphasized the crucial involvement of the immune system, especially T cells, in driving tumor progression and influencing patient outcomes. The emerging field of immunometabolism has shown that metabolic pathways play a pivotal role in regulating immune responses within the tumor microenvironment. This study aims to clarify the relationships between specific T cell phenotypes, circulating metabolites, and malignant brain tumors.

Methods: We utilized a multiple mendelian randomization approach to investigate the associations between T cell phenotypes and malignant brain tumors, as well as the role of plasma metabolites in mediating these interactions. Instrumental variables were selected based on stringent criteria, and multiple mendelian randomization methods were utilized to identify causal pathways and metabolites potentially mediating these effects.

Results: Our analysis identified significant associations between seven distinct T cell phenotypes, including various CD8 + and regulatory T cell subsets, and the presence of malignant brain tumors. We also identified 87 plasma metabolites correlated with these tumors. Notably, metabolites such as octadecanedioylcarnitine (C18-DC) and eicosanedioate (C20-DC) were implicated in modulating the risk of developing malignant brain tumors. Furthermore, metabolites such as 5-dodecenoate (12:1n7) and arachidonate (20:4n6) were found to influence tumor risk, particularly in relation to CD28 - CD8 + T cells.

Conclusion: The study identifies key T cell phenotypes and plasma metabolites involved in the pathogenesis of malignant brain tumors, offering potential biomarkers and therapeutic targets for future interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12883-024-04015-1DOI Listing

Publication Analysis

Top Keywords

malignant brain
24
brain tumors
20
cell phenotypes
16
plasma metabolites
12
multiple mendelian
8
mendelian randomization
8
metabolites mediating
8
brain
7
metabolites
7
malignant
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!