Biodegradation of azo dyes by Aspergillus flavus and its bioremediation potential using seed germination efficiency.

BMC Microbiol

Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.

Published: January 2025

The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency. The recent attention to effectively utilizing microbes to convert toxic industrial azo dyes into non-hazardous compounds has garnered significant attention. In the present study, four fungal strains-Aspergillus flavus, Aspergillus terreus, Aspergillus niger, and Fusarium oxysporium-were employed to screen for the degradation and detoxification of azo dyes including congo red, crystal violet, bromophenol blue, and malachite green. After eight days, A. flavus had degraded azo dyes at the maximum proportion. The maximum decolorization (%) was achieved at 50 mg/L of dye concentration, 8 days of incubation, pH 6, 30 °C temperature, sucrose as a carbon source, NaNO as a nitrogen source, Ca as minerals, and using static culture. The efficient production of laccases, lignin peroxidase, and manganese peroxidase enzymes by A. flavus proved that the enzyme played a crucial role in decolorizing the harmful azo dyes. The Fourier Transform Infrared spectrometer (FT-IR) data validated the decolorization and degradation process brought on by absorption and biodegradation. Compared to control plants, the results of the phytotoxicity assay showed that the degraded product was less harmful to maize and common bean plant's growth and germination rates. As a result, the findings indicate that A. flavus is a viable option for remediating azo dyes. This aids in the biodegradation of azo dyes found in wastewater.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11715232PMC
http://dx.doi.org/10.1186/s12866-024-03703-9DOI Listing

Publication Analysis

Top Keywords

azo dyes
32
biodegradation azo
8
dyes
8
azo
7
flavus
5
dyes aspergillus
4
aspergillus flavus
4
flavus bioremediation
4
bioremediation potential
4
potential seed
4

Similar Publications

Aryl diazenes, particularly azobenzenes (AB), represent a versatile class of compounds with significant historical and practical relevance, ranging from dyes to molecular machines, solar thermal and electrochemical storage. Their oxygen-substituted counterparts, azoxybenzenes (AOB), share structural similarities but have been less explored, especially in energy storage applications. This study investigates the redox properties of AOB, comparing them to AB, and evaluates their potential as redox-active materials for energy storage systems.

View Article and Find Full Text PDF

Structural characteization and anti-colorectal cancer activity of a fucogalactan purified from Ganoderma tsugae.

Carbohydr Polym

March 2025

Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection and Mycology, Jilin Agricultural University, Changchun 130118, China. Electronic address:

Ganoderma tsugae, a traditional medicinal mushroom, exhibits anti-tumor properties; however, the effects of its polysaccharide on anti-colorectal cancer remain undetermined. Herein, a fucogalactan of Ganoderma tsugae (GTP-a2) was isolated and purified from its fruiting body. The molecular weight of GTP-a2 is 7.

View Article and Find Full Text PDF

A novel series of azo dyes was successfully synthesized by combining amino benzoic acid and amino phenol on the same molecular framework azo linkage. The structural elucidation of these dyes was carried out using various spectroscopic techniques, including UV-vis, FT-IR, NMR spectroscopy, and HRMS. Surprisingly, the aromatic proton in some dyes exhibited exchangeability in DO, prompting a 2D NMR analysis to confirm this phenomenon.

View Article and Find Full Text PDF

An agar medium-based method for screening somatic incompatibility in Agaricus bisporus.

Fungal Biol

February 2025

Wageningen Plant Breeding Research, Mushroom Research Group, the Netherlands. Electronic address:

To visualize the nonself recognition reaction in the cultivated mushroom Agaricus bisporus, we developed a method using the azo dye Evans blue. The use of Evans blue highlights dead mycelial sections, which are produced following nonself recognition in the interaction zone between two individuals. This method can differentiate between distinct heterokaryons, as well as between closely related heterokaryons constructed from siblings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!