Background: Intracerebral hemorrhage (ICH) is a common subtype of stroke, characterized by a high mortality rate and a tendency to cause neurological damage. This study aims to investigate the role and mechanisms of lncRNA HCP5 in ICH.
Methods: We simulated ICH in vivo by injecting collagenase into rats and established an in vitro model using hemoglobin-treated BV2 cells. HCP5 and miR-195-5p levels were quantified by RT-qPCR. mNSS score was used to evaluate neurological deficits in the rats. The dry-wet weight method assessed the degree of brain edema. Cell viability and apoptosis rates were determined using the CCK-8 assay and flow cytometry, respectively. The targeting relationship between HCP5 and miR-195-5p was confirmed using dual-luciferase reporter assays and RNA immunoprecipitation. ELISA was utilized to measure inflammatory factors, and commercial kits were used to detect MDA and ROS levels.
Results: In the ICH model rats, HCP5 levels were significantly elevated. It was also found that silencing HCP5 significantly alleviated brain edema and neurological deficits in the ICH rats, and there was a marked improvement in ICH-induced neuroinflammation and oxidative stress. Moreover, HCP5 was found to sponge miR-195-5p, and inhibiting miR-195-5p could counteract the neuroprotective effects of silencing HCP5. Similar results were obtained in the in vitro experiments with BV2 cells.
Conclusions: Silencing HCP5 can alleviate brain edema, neurological dysfunction, neuroinflammation, and oxidative stress caused by ICH via miR-195-5p.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708098 | PMC |
http://dx.doi.org/10.1186/s12868-024-00923-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!