Most cancer mutation profiling studies are laboratory-based and lack direct clinical application. For clinical use, it is necessary to focus on key genes and integrate them with relevant clinical variables. We aimed to evaluate the prognostic value of the dosage of the KRAS G12 mutation, a key pancreatic ductal adenocarcinoma (PDAC) variant and to investigate the biological mechanism of the prognosis associated with the dosage of the KRAS G12 mutation. In this retrospective cohort study, we analyzed 193 surgically treated patients with PDAC between 2009 and 2016. RNA, whole-exome, and KRAS-targeted sequencing data were used to estimate the dosage of the KRAS G12 mutant. Our prognostic scoring system included the mutation dosage from targeted sequencing ( > 0.195, 1 point), maximal tumor diameter at preoperative imaging ( > 20 mm, 1 point), and carbohydrate antigen 19-9 levels ( > 150 U/mL, 1 point). The KRAS mutation dosage exhibited comparable performance with clinical variables for survival prediction. High KRAS mutation dosages activated the cell cycle, leading to high mutation rates and poor prognosis. According to prognostic scoring systems that integrate mutation dosage with clinical factors, patients with 0 points had superior median overall survival of 97.0 months and 1-year, 3-year, and 5-year overall survival rates of 95.8%, 70.8%, and 66.4%, respectively. In contrast, patients with 3 points had worse median overall survival of only 16.0 months and 1-year, 3-year, and 5-year overall survival rates of 65.2%, 8.7%, and 8.7%, respectively. The incorporation of the KRAS G12 mutation dosage variable into prognostic scoring systems can improve clinical variable-based survival prediction, highlighting the feasibility of an integrated scoring system with clinical significance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s12276-024-01382-0 | DOI Listing |
Immunohorizons
January 2025
Department of Surgery, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada.
The global dissemination of SARS-CoV-2 led to a worldwide pandemic in March 2020. Even after the official downgrading of the COVID-19 pandemic, infection with SARS-CoV-2 variants continues. The rapid development and deployment of SARS-CoV-2 vaccines helped to mitigate the pandemic to a great extent.
View Article and Find Full Text PDFOncologist
January 2025
Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Thoracic Oncology, 1066 CX Amsterdam, The Netherlands.
Introduction: We describe the safety of sotorasib monotherapy in patients with KRAS G12C-mutated advanced non-small cell lung cancer (NSCLC) and discuss practical recommendations for managing key risks.
Methods: Incidence rates of treatment-related adverse events (TRAEs) were pooled from 4 clinical trials: CodeBreaK 100 (NCT03600883), CodeBreaK 101 (NCT04185883), CodeBreaK 105 (NCT04380753), and CodeBreaK 200 (NCT04303780) and graded according to CTCAE v5.0.
Pathophysiology
January 2025
Postgraduate Program in Health Sciences, Faculty of Medicine of Jundiaí (FMJ), Jundiaí 13202-550, Brazil.
Duchenne muscular dystrophy (DMD) is a genetic disease characterized by a lack of dystrophin caused by mutations in the DMD gene, and some minor cases are due to decreased levels of dystrophin, leading to muscle weakness and motor impairment. Creatine supplementation has demonstrated several benefits for the muscle, such as increased strength, enhanced tissue repair, and improved ATP resynthesis. This preliminary study aimed to investigate the effects of creatine on the gastrocnemius muscle in dystrophy muscle (MDX) and healthy C57BL/10 mice.
View Article and Find Full Text PDFPharmacoepidemiol Drug Saf
February 2025
Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
Purpose: The p.G12C mutation in KRAS is commonly found in many cancers and was previously untreatable until drugs like sotorasib were developed. However, up to 15% of patients treated with sotorasib have experienced hepatobiliary adverse events.
View Article and Find Full Text PDFJ Dermatolog Treat
December 2025
Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
Background: Hailey-Hailey disease (HHD), a genetic blistering disease, is caused by a mutation in a calcium transporter protein in the Golgi apparatus encoded by the gene. Clinically, HHD is characterized by flaccid vesicles, blisters, erosions, fissures, and maceration mainly in intertriginous regions. Some patients remain refractory to conventional treatments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!