A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Medical large language models are vulnerable to data-poisoning attacks. | LitMetric

The adoption of large language models (LLMs) in healthcare demands a careful analysis of their potential to spread false medical knowledge. Because LLMs ingest massive volumes of data from the open Internet during training, they are potentially exposed to unverified medical knowledge that may include deliberately planted misinformation. Here, we perform a threat assessment that simulates a data-poisoning attack against The Pile, a popular dataset used for LLM development. We find that replacement of just 0.001% of training tokens with medical misinformation results in harmful models more likely to propagate medical errors. Furthermore, we discover that corrupted models match the performance of their corruption-free counterparts on open-source benchmarks routinely used to evaluate medical LLMs. Using biomedical knowledge graphs to screen medical LLM outputs, we propose a harm mitigation strategy that captures 91.9% of harmful content (F1 = 85.7%). Our algorithm provides a unique method to validate stochastically generated LLM outputs against hard-coded relationships in knowledge graphs. In view of current calls for improved data provenance and transparent LLM development, we hope to raise awareness of emergent risks from LLMs trained indiscriminately on web-scraped data, particularly in healthcare where misinformation can potentially compromise patient safety.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-024-03445-1DOI Listing

Publication Analysis

Top Keywords

large language
8
language models
8
medical knowledge
8
llm development
8
knowledge graphs
8
llm outputs
8
medical
7
medical large
4
models
4
models vulnerable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!