Inherent asymmetry of Rpd3S coordinates its nucleosome engagement and association with elongating RNA polymerase II.

Nat Struct Mol Biol

Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Published: January 2025

The Rpd3S histone deacetylase complex has a crucial role in genomic integrity by deacetylating transcribed nucleosomes following RNA polymerase (Pol) II passage. Cryo-EM studies highlight the importance of asymmetrical Rco1-Eaf3 dimers in nucleosome binding, yet the interaction dynamics with nucleosomal substrates alongside elongating Pol II are poorly understood. Here we demonstrate the essential function of the Rco1 N-terminal intrinsically disordered region (IDR) in modulating Pol II association, in which K/R mutations within the Rco1 IDR impair interaction of Rpd3S with the C-terminal domain (CTD) of Rpb1, without affecting nucleosome recognition or complex integrity. We also identify the Rco1-PHD1 and Eaf3-CHD domains as crucial for specific binding to Ser5-phosphorylated CTD. The Rco1 IDR alleviates autoinhibition from its C terminus, facilitating PHD1-CHD engagement with phosphorylated CTD. Furthermore, we reveal a conserved mechanism by which asymmetrical Rco1-Eaf3 dimers coordinate nucleosome engagement and Pol II interaction, enhancing understanding of epigenetic complexes associated with transcriptional machinery.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41594-024-01453-wDOI Listing

Publication Analysis

Top Keywords

nucleosome engagement
8
rna polymerase
8
asymmetrical rco1-eaf3
8
rco1-eaf3 dimers
8
rco1 idr
8
inherent asymmetry
4
asymmetry rpd3s
4
rpd3s coordinates
4
nucleosome
4
coordinates nucleosome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!