The oestrogen receptor (ER or ERα), a nuclear hormone receptor that drives most breast cancer, is commonly activated by phosphorylation at serine 118 within its intrinsically disordered N-terminal transactivation domain. Although this modification enables oestrogen-independent ER function, its mechanism has remained unclear despite ongoing clinical trials of kinase inhibitors targeting this region. By integration of small-angle X-ray scattering and nuclear magnetic resonance spectroscopy with functional studies, we show that serine 118 phosphorylation triggers an unexpected expansion of the disordered domain and disrupts specific hydrophobic clustering between two aromatic-rich regions. Mutations mimicking this disruption rescue ER transcriptional activity, target-gene expression and cell growth impaired by a phosphorylation-deficient S118A mutation. These findings, driven by hydrophobic interactions, extend beyond electrostatic models and provide mechanistic insights into intrinsically disordered proteins, with implications for other nuclear receptors. This fundamental sequence-structure-function relationship advances our understanding of intrinsic ER disorder, crucial for developing targeted breast cancer therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-024-08400-1 | DOI Listing |
Nature
January 2025
Case Comprehensive Cancer Center and Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
The oestrogen receptor (ER or ERα), a nuclear hormone receptor that drives most breast cancer, is commonly activated by phosphorylation at serine 118 within its intrinsically disordered N-terminal transactivation domain. Although this modification enables oestrogen-independent ER function, its mechanism has remained unclear despite ongoing clinical trials of kinase inhibitors targeting this region. By integration of small-angle X-ray scattering and nuclear magnetic resonance spectroscopy with functional studies, we show that serine 118 phosphorylation triggers an unexpected expansion of the disordered domain and disrupts specific hydrophobic clustering between two aromatic-rich regions.
View Article and Find Full Text PDFBiomolecules
December 2024
Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia.
The first monomeric pyridoxal-5'-phosphate (PLP)-dependent transaminase from a marine, aromatic-compound-degrading, sulfate-reducing bacterium Tol2, has been studied using structural, kinetic, and spectral methods. The monomeric organization of the transaminase was confirmed by both gel filtration and crystallography. The PLP-dependent transaminase is of the fold type IV and deaminates D-alanine and ()-phenylethylamine in half-reactions.
View Article and Find Full Text PDFPlant Sci
December 2024
Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, WB, India. Electronic address:
Ubiquitous to every stratum of life, cryptochromes regulate numerous light dependent functions in terrestrial plants. These include light-dependent transcription, circadian rhythm, inhibition of hypocotyl elongation, programmed cell death, promotion of floral initiation, mediation of gravitropic response, responding to biotic and abiotic stress etc. There have been quite a few seminal reviews including on plant cryptochromes, focusing mostly on the detailed functional aspects.
View Article and Find Full Text PDFBiotechnol Adv
December 2024
Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China. Electronic address:
The catalytic conversion of chiral alcohols and corresponding carbonyl compounds by carbonyl reductases (alcohol dehydrogenases), which are NAD(P) or NAD(P)H-dependent oxidoreductases, has attracted considerable attention. However, existing carbonyl reductases are insufficient to meet the demands of diverse industrial applications; hence, new enzymes with functions that can expand the toolbox of biocatalysts are urgently required. Developing precisely controlled chiral biocatalysts is of great significance for the efficient development of a broad spectrum of active pharmaceutical ingredients via biosynthesis.
View Article and Find Full Text PDFAcc Chem Res
November 2024
Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!