A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An approach for load frequency control enhancement in two-area hydro-wind power systems using LSTM + GA-PID controller with augmented lagrangian methods. | LitMetric

An approach for load frequency control enhancement in two-area hydro-wind power systems using LSTM + GA-PID controller with augmented lagrangian methods.

Sci Rep

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.

Published: January 2025

This paper proposes an advanced Load Frequency Control (LFC) strategy for two-area hydro-wind power systems, using a hybrid Long Short-Term Memory (LSTM) neural network combined with a Genetic Algorithm-optimized PID (GA-PID) controller. Traditional PID controllers, while extensively used, often face limitations in handling the nonlinearities and uncertainties inherent in interconnected power systems, leading to slower settling time and higher overshoot during load disturbances. The LSTM + GA-PID controller mitigates these issues by utilizing LSTM's capacity to learn from historical data by using gradient descent to forecast the future disturbances, while the GA optimizes the PID parameters in real time, ensuring dynamic adaptability and improved control precision. The proposed controller's performance is rigorously tested against both classical PID and GA-PID controllers through simulations conducted in MATLAB/Simulink. The results reveal that the LSTM + GA-PID controller achieves a 2.33-fold reduction in settling time compared to the GA-PID controller and a 4.07-fold reduction compared to the classical PID controller. Additionally, the controller exhibits a 3.27% reduction in overshoot and mitigates mechanical power output perturbations by 3.43% during transient load changes. Hardware validation has been carried out to show the robustness of the model.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-85639-2DOI Listing

Publication Analysis

Top Keywords

power systems
12
lstm + ga-pid controller
12
load frequency
8
frequency control
8
two-area hydro-wind
8
hydro-wind power
8
pid ga-pid
8
ga-pid controller
8
settling time
8
classical pid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!