A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multimodal fuzzy logic-based gait evaluation system for assessing children with cerebral palsy. | LitMetric

Multimodal fuzzy logic-based gait evaluation system for assessing children with cerebral palsy.

Sci Rep

Department of Biomedical Engineering, Faculty of Mechanical and Electrical Engineering, Damascus University, Damascus 86, Syria.

Published: January 2025

Gait analysis is crucial for identifying functional deviations from the normal gait cycle and is essential for the individualized treatment of motor disorders such as cerebral palsy (CP). The primary contribution of this study is the introduction of a multimodal fuzzy logic system-based gait index (FLS-GIS), designed to provide numerical scores for gait patterns in both healthy children and those with CP, before and after surgery. This study examines and evaluates the surgical outcomes in children with CP who have undergone Achilles tendon lengthening. The FLS-GIS utilizes hierarchical feature fusion and fuzzy logic models to systematically evaluate and score gait patterns, focusing on spatial and temporal features across the hip, knee, and ankle joints. The two FLS types-1 (FLS-GIS-T1) and type-2 (FLS-GIS-T2) indices, respectively, were implemented to comprehensively study gait profiles. Starting with the gait parameters of all subjects, the changes in gait parameters in post-surgery children reflect significant improvements in gait dynamics, bringing walking patterns in CP children closer to those of their typically healthy peers. Both FLS-GIS-T1 and FLS-GIS-T2 demonstrated significant improvements in post-surgery evaluations compared to pre-surgery assessments, with p values < 0.05 and < 0.001, respectively, when compared to traditional indices. The proposed FLS-based index offers clinicians a robust and standardized gait evaluation tool, characterized by a fixed range of values, enabling consistent assessment across various gait conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-85172-2DOI Listing

Publication Analysis

Top Keywords

gait
10
multimodal fuzzy
8
cerebral palsy
8
fuzzy logic
8
gait patterns
8
gait parameters
8
children
5
fuzzy logic-based
4
logic-based gait
4
gait evaluation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!