Protein lactylation is an emerging field. To advance the exploration of its biological functions, here we develop a comprehensive workflow that integrates proteomics to identify lactylated sites, genetic code expansion (GCE) for the expression of site-specifically lactylated proteins in living cells, and an integrated functional analysis (IFA) platform to evaluate their biological effects. Using a combined wet-and-dry-lab proteomics strategy, we identify a conserved lactylation at ALDOA-K147, which we hypothesize plays a significant biological role. Expression of this site-specifically lactylated ALDOA in mammalian cells reveals that this modification not only inhibits enzymatic activity but also induces gain-of-function effects. These effects reshaped ALDOA functionality by enhancing protein stability, promoting nuclear translocation, regulating adhesion-related gene expression, altering cell morphology and modulating ALDOA-interacting proteins. Our findings highlight the utility of the GCE-based workflow in establishing causal relationships between specific lactylation events and both target-specific and cell-wide changes, advancing our understanding of protein lactylation's functional impact.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-024-55165-2DOI Listing

Publication Analysis

Top Keywords

genetic code
8
code expansion
8
living cells
8
expression site-specifically
8
site-specifically lactylated
8
expansion reveals
4
reveals site-specific
4
lactylation
4
site-specific lactylation
4
lactylation living
4

Similar Publications

Small proteins (≤100 amino acids) play important roles across all life forms, ranging from unicellular bacteria to higher organisms. In this study, we have developed SProtFP which is a machine learning-based method for functional annotation of prokaryotic small proteins into selected functional categories. SProtFP uses independent artificial neural networks (ANNs) trained using a combination of physicochemical descriptors for classifying small proteins into antitoxin type 2, bacteriocin, DNA-binding, metal-binding, ribosomal protein, RNA-binding, type 1 toxin and type 2 toxin proteins.

View Article and Find Full Text PDF

Evaluating the accuracy of protein-coding sequences in genome annotations is a challenging problem for which there is no broadly applicable solution. In this manuscript, we introduce PSAURON (Protein Sequence Assessment Using a Reference ORF Network), a novel software tool developed to help assess the quality of protein-coding gene annotations. Utilizing a machine learning model trained on a diverse dataset from over 1000 plant and animal genomes, PSAURON assigns a score to coding DNA or protein sequence that reflects the likelihood that the sequence is a genuine protein-coding region.

View Article and Find Full Text PDF

Background: TP53 variant classification benefits from the availability of large-scale functional data for missense variants generated using cDNA-based assays. However, absence of comprehensive splicing assay data for TP53 confounds the classification of the subset of predicted missense and synonymous variants that are also predicted to alter splicing. Our study aimed to generate and apply splicing assay data for a prioritised group of 59 TP53 predicted missense or synonymous variants that are also predicted to affect splicing by either SpliceAI or MaxEntScan.

View Article and Find Full Text PDF

Sequence-based machine-learning models trained on genomics data improve genetic variant interpretation by providing functional predictions describing their impact on the cis-regulatory code. However, current tools do not predict RNA-seq expression profiles because of modeling challenges. Here, we introduce Borzoi, a model that learns to predict cell-type-specific and tissue-specific RNA-seq coverage from DNA sequence.

View Article and Find Full Text PDF

Protein lactylation is an emerging field. To advance the exploration of its biological functions, here we develop a comprehensive workflow that integrates proteomics to identify lactylated sites, genetic code expansion (GCE) for the expression of site-specifically lactylated proteins in living cells, and an integrated functional analysis (IFA) platform to evaluate their biological effects. Using a combined wet-and-dry-lab proteomics strategy, we identify a conserved lactylation at ALDOA-K147, which we hypothesize plays a significant biological role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!