Background: Cancer presents a significant global health challenge, necessitating effective treatment strategies. While chemotherapy is widely employed, its non-specific nature can induce adverse effects on normal cells, prompting the exploration of targeted therapies. The 1,2,4-triazole scaffold has emerged as a promising element in anticancer drug development due to its structural diversity and potential to target cancer cells.

Objective: This study aims to synthesize and evaluate novel derivatives derived from the 1,2,4-triazole scaffold for their potential as anticancer agents. Molecular docking techniques are employed to investigate the interactions between the designed derivatives and specific cancer-related targets, providing insights into potential underlying mechanisms.

Methods: The synthesis involves a three-step process to produce 5-oxo-1,2,4-triazole-3-carboxamide derivatives. Various analytical techniques, including NMR and HRMS, validate the successful synthesis. Molecular docking studies utilize X-ray crystal structures of EGFR and CDK-4 obtained from the Protein Data Bank, employing the Schrödinger suite for ligand preparation and Glide's extra-precision docking modes for scoring.

Results: The synthesis yields compounds with moderate to good yields, supported by detailed characterization. Molecular docking scores for the derivatives against EGFR and CDK-4 revealed diverse affinities influenced by distinct substituents. Compounds with hydroxyl, and halogen, substitutions exhibited notable binding affinities, while alkyl and amino substitutions showed varying effects. The 1,2,4-triazole derivatives demonstrated potential for targeted cancer therapy.

Conclusion: The study highlights the successful synthesis of 5-oxo-1,2,4-triazole-3-carboxamides and their diverse interactions with cancer-related targets. The findings emphasized the potential of these derivatives as candidates for further development as anticancer agents, offering insights into structure-activity relationships. The 1,2,4-triazole scaffold stands out as a promising platform for advancing cancer treatment with enhanced precision and efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0118715206315373241014101856DOI Listing

Publication Analysis

Top Keywords

molecular docking
16
anticancer agents
12
124-triazole scaffold
12
docking studies
8
cancer-related targets
8
successful synthesis
8
egfr cdk-4
8
derivatives
6
synthesis
5
docking
5

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Edith Cowan University, Perth, Western Australia, Australia.

Background: Accumulation of amyloid beta 42 (Aβ42) senile plaques is the most critical event leading to Alzheimer's disease (AD). Currently approved drugs for AD have not been able to effectively modify the disease. This has caused increasing research interests in health beneficial nutritious plant foods as viable alternative therapy to prevent or manage AD.

View Article and Find Full Text PDF

Background: Studies suggest a potential link between stroke and Alzheimer's disease wherein stroke may serve as a trigger for the onset or acceleration of Alzheimer's pathogenesis as damage to the brain's blood vessels may lead to the accumulation of amyloid beta protein which is a hallmark of Alzheimer's disease. Recent research has shown that stroke treatment may hold the key to treating Alzheimer's disease. The anti-inflammatory potentials of Cholinergic signaling are a novel therapeutic target in memory decline associated with Alzheimer's.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.

Background: Alzheimer disease (AD) is a progressive neurodegenerative disease that is accountable for the leading case of dementia in elder people. Before, only symptomatic treatments are available for AD. Since 2021, two anti-amyloid antibodies aducanumab and lecanemab have been approved by the US Food and Drug Administration.

View Article and Find Full Text PDF

Background: Lyn kinase, a member of the Src family of tyrosine kinases, predominantly phosphorylates ITIM and ITAM motifs linked to immune receptors and adaptor proteins, and is emerging as a target for Alzheimer's disease (AD). The role of Lyn in TREM2-mediated microglial activation and phagocytosis, a critical pathway for clearing Aβ plaques, remains unclear and potent, selective, and brain penetrant Lyn inhibitors are unavailable. In this study, we report the characterization of Lyn kinase inhibitors from the literature as well as the establishment of an advanced virtual screening platform at the IUSM-Purdue-TREAT-AD center to identify new type II Lyn inhibitors suitable as molecular probes.

View Article and Find Full Text PDF

Background: Protein misfolding is a key pathological phenomenon driving neurodegenerative diseases that affect millions of people. Visualizing this misfolding process with smart imaging probes would greatly facilitate early diagnosis, etiology elucidation, disease progression monitoring, and drug discovery of neurodegeneration. Although numerous probes have been reported, several unmet needs still exist.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!