Ocean alkalinity enhancement (OAE) based on enhanced weathering of olivine (EWO) is a promising marine carbon dioxide removal (mCDR) technique. Previous research primarily focuses on the toxicological effects of potentially toxic metals (PTMs) released from olivine. In this Perspective, we explore the overlooked impacts of EWO on environmental media in two scenarios: olivine applied to beaches/shallow continental shelves and offshore dispersion by vessels. We analyze the potential migration pathways of iron and PTMs (e.g., nickel and chromium) after their release, and their interactions with manganese oxides in sediments, potentially causing secondary contamination. Additionally, we propose mitigation strategies to prevent PTM concentrations from exceeding local environmental quality standards, including the use of alkalization equipment to control PTM levels. This Perspective underscores the need for thorough environmental assessments prior to large-scale implementation to ensure the sustainability and efficacy of mCDR efforts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.4c10705 | DOI Listing |
Environ Sci Technol
January 2025
Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China.
Ocean alkalinity enhancement (OAE) based on enhanced weathering of olivine (EWO) is a promising marine carbon dioxide removal (mCDR) technique. Previous research primarily focuses on the toxicological effects of potentially toxic metals (PTMs) released from olivine. In this Perspective, we explore the overlooked impacts of EWO on environmental media in two scenarios: olivine applied to beaches/shallow continental shelves and offshore dispersion by vessels.
View Article and Find Full Text PDFThis case study of Kongsfjorden, western coastal Svalbard, provides insights on how freshwater runoff from marine- and land-terminating glaciers influences the biogeochemical cycles and distribution patterns of carbon, nutrients, and trace elements in an Arctic fjord system. We collected samples from the water column at stations along the fjord axis and proglacial river catchments, and analyzed concentrations of dissolved trace elements, together with dissolved nutrients, as well as alkalinity and dissolved inorganic carbon. Statistical tools were applied to identify and quantify biogeochemical processes within the fjord that govern the constituent distributions.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan.
Luteolin (Lut) and apigenin (Apn), flavones present in various edible plants, exhibit diverse antioxidant and pharmacological activities but have limited in vivo efficacy due to low water solubility and poor bioavailability. Here, we generated luteolin and apigenin monophosphate derivatives (LutPs and ApnPs) individually via microbial biotransformation. We then characterized their physicochemical properties and evaluated their in vitro and in vivo pharmacokinetics and bioavailability.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
School of Environmental and Geographic Sciences, Qingdao University, Qingdao 266071, China. Electronic address:
As a transitional zone where rivers meet the sea, estuaries are influenced by river transport and ocean tides, resulting in complex variations in parameters such as organic matter content, pH, and sediment salinity. This paper primarily explores the vertical migration patterns of polychlorinated biphenyls (PCBs) under complex conditions, focusing on the soil sediments in the Dagu River estuary area. We designed an indoor soil column leaching experiment to investigate how soil organic matter content, pH, and salinity affect the vertical migration of PCBs in soil.
View Article and Find Full Text PDFSci Rep
January 2025
Grant Institute, School of Geosciences, University of Edinburgh, James Hutton Road, Edinburgh, EH9 3FE, UK.
Glendonites (from the precursor of ikaite, CaCO.6HO) preferentially precipitate within sediments in cold waters (- 2 to 7°C) via either organotrophic or methanogenic sulphate reduction. Here, we report the first occurrence of possible glendonites associated with the end Permian mass extinction in the earliest Triassic (ca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!