Impact of physiological ionic strength and crowding on kinesin-1 motility.

Cell Struct Funct

Department of Cell Biology, Graduate School of Medical Sciences, Tokushima University.

Published: January 2025

The motility of biological molecular motors has typically been analyzed by in vitro reconstitution systems using motors isolated and purified from organs or expressed in cultured cells. The behavior of biomolecular motors within cells has frequently been reported to be inconsistent with that observed in reconstituted systems in vitro. Although this discrepancy has been attributed to differences in ionic strength and intracellular crowding, understanding how such parameters affect the motility of motors remains challenging. In this report, we investigated the impact of intracellular crowding in vitro on the mechanical properties of kinesin under a high ionic strength that is comparable to the cytoplasm. Initially, we characterized viscosity in a cell by using a kinesin motor lacking the cargo-binding domain. We then used polyethylene glycol to create a viscous environment in vitro comparable to the intracellular environment. Our results showed that kinesin frequently dissociated from microtubules under high ionic strength conditions. However, under conditions of both high ionic strength and crowding with polymers, the processive movement of kinesin persisted and increased in frequency. This setting reproduces the significant variations in the mechanical properties of motors measured in the intracellular environment and suggests a mechanism whereby kinesin maintains motility under the high ionic strengths found in cells.Key words: Kinesin motility, molecular crowding, ionic strength, intracellular transport, processivity of molecular motors.

Download full-text PDF

Source
http://dx.doi.org/10.1247/csf.24074DOI Listing

Publication Analysis

Top Keywords

ionic strength
24
high ionic
16
strength crowding
8
molecular motors
8
strength intracellular
8
intracellular crowding
8
mechanical properties
8
intracellular environment
8
ionic
7
strength
6

Similar Publications

Enhancing Microdomain Consistency in Polymer Electrolytes towards Sustainable Lithium Batteries.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.

Polymer electrolytes incorporated with fillers possess immense potential for constructing the fast and selective Li conduction. However, the inhomogeneous distribution of the fillers usually deteriorates the microdomain consistency of the electrolytes, resulting in uneven Li flux, and unstable electrode-electrolyte interfaces. Herein, we formulate a solution-process chemistry to in situ construct gel polymer electrolytes (GPEs) with well-dispersed metal-organic frameworks (MOFs), leading to a uniform microdomain structure.

View Article and Find Full Text PDF

Acrylic pressure-sensitive adhesives (PSAs) are widely applied in transdermal drug delivery systems (TDDS). However, the molecular mechanisms underlying the effect of functional groups of PSAs on drug release and transdermal permeation properties remain insufficiently clear. In this study, we investigated the effect of acrylic PSAs' functional groups on the in vitro release and transdermal permeation properties of a model drug guanfacine (GFC).

View Article and Find Full Text PDF

Enhancing salt tolerance genetically through defining the genetic and physiological mechanisms intergenerational and transgenerational stress memory that contributes to sustainable agriculture by reducing the reliance on external inputs such as irrigation and improving the adaptability of barley to changing climate conditions. Salinity stress poses a substantial challenge to barley production worldwide, adversely affecting crop yield, quality, and agricultural sustainability. To address this, the present study utilized a genome-wide association san (GWAS) to identify genetic associations underlying intergenerational and transgenerational stress memory in response to salinity in a diverse panel of 138 barley accessions.

View Article and Find Full Text PDF

The motility of biological molecular motors has typically been analyzed by in vitro reconstitution systems using motors isolated and purified from organs or expressed in cultured cells. The behavior of biomolecular motors within cells has frequently been reported to be inconsistent with that observed in reconstituted systems in vitro. Although this discrepancy has been attributed to differences in ionic strength and intracellular crowding, understanding how such parameters affect the motility of motors remains challenging.

View Article and Find Full Text PDF

Biocompatible dually reinforced gellan gum hydrogels with selective antibacterial activity.

Carbohydr Polym

March 2025

School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China. Electronic address:

The poor mechanics and functionality of natural-polymer hydrogels from gellan gum (GG) prohibit their practical application, despite the intrinsic thermo-reversible gelation nature, structural and quality consistency, biocompatibility, biodegradability and sustainability of microbial fermentation-produced GG. Herein, a dual-reinforcing strategy, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!