Fates of bioactive compounds and antioxidant activities of red pitaya pulp upon in vitro gastrointestinal digestion.

Food Res Int

Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangdong 510610, China. Electronic address:

Published: January 2025

Health benefit effects of bioactive compounds depend on their bioavailabilities, which could vary according to factors including food matrix and digestion environment. To understand the "bioaccessible" health benefit of red pitay pulp, the INFOGEST static in vitro simulation of gastrointestinal (GI) digestion model and targeted metabolomics method were applied to unravel the fates of bioactive compounds in the whole food of red pitaya pulp during GI digestion. The antioxidant activity as one of the health benefit indices was also assessed to compare the changes in bioactive properties of red pitaya pulp. Results showed that, after GI digestion, total phenolic and flavonoid content increased by 84% and 4.55 folds, respectively. But total betacyanin content decreased. All the detected phenolic acids increased during the GI process, and lots of new phenolic compounds were produced. The overall chemical antioxidant capacity of red pitaya pulp increased after GI digestion. Correlation analysis results indicated that flavonoids and ferulic acid were probably the primary sources of the antioxidant capacity of the red pitaya pulp and its digests. Moreover, the cytoprotective effects against HO-induced oxidative damage varied among gastric cell, enterocyte and hepatocyte. The GI digests of red pitaya pulp could better alleviate the HO-induced oxidative stress in cells by preventing the increase of reactive oxygen species (ROS), inhibiting the production of malondialdehyde (MDA), increasing the production of glutathione (GSH), and promoting the activities of catalase (CAT) and superoxide dismutase (SOD). These findings can be used as a basis for future studies in the design and production of functional ingredients/foods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2024.115495DOI Listing

Publication Analysis

Top Keywords

red pitaya
24
pitaya pulp
24
bioactive compounds
12
health benefit
12
fates bioactive
8
gastrointestinal digestion
8
pulp digestion
8
antioxidant capacity
8
capacity red
8
ho-induced oxidative
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!