Adhesive conductive wood-based hydrogel with high tensile strength as a flexible sensor.

Carbohydr Polym

State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China.

Published: March 2025

Conductive hydrogels have promising applications for flexible strain sensors. However, most hydrogels have poor tensile strength and are susceptible to damage, significantly impeding their potential for further application. Wood has been used to reinforce hydrogels, significantly enhancing their strength and dimensional stability. However, wood-based hydrogels generally lack adhesive properties or exhibit low self-adhesion. To address this issue, we introduced acryloyloxyethyltrimethyl ammonium chloride (DAC) into the hydrogel network through graft aggregation. The resulting electrostatic interactions significantly enhanced the adhesion of the wood-based hydrogel up to 270 kPa (for glass) and concurrently strengthened its cohesion. The prepared novel wood-based hydrogel (WDDH) exhibited high tensile strength (3.38 MPa), low-swelling ratio (only 2 % longitudinal), and high tensile strain (274.40 %). When WDDH was used as the wearable strain sensor, it showed a gauge factor of approximately 4.94. The device effectively captured and detected human movements, including finger and joint flexion, walking patterns, and hydration habits. The objective of this research is to develop a wood-based hydrogel with enhanced mechanical strength, adhesive properties, and flexibility for use in wearable sensors. This study provides insight into the development of flexible sensor hydrogels with improved adhesion properties using biomass materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.122954DOI Listing

Publication Analysis

Top Keywords

wood-based hydrogel
16
high tensile
12
tensile strength
12
flexible sensor
8
adhesive properties
8
wood-based
5
hydrogel
5
strength
5
hydrogels
5
adhesive conductive
4

Similar Publications

Adhesive conductive wood-based hydrogel with high tensile strength as a flexible sensor.

Carbohydr Polym

March 2025

State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China.

Conductive hydrogels have promising applications for flexible strain sensors. However, most hydrogels have poor tensile strength and are susceptible to damage, significantly impeding their potential for further application. Wood has been used to reinforce hydrogels, significantly enhancing their strength and dimensional stability.

View Article and Find Full Text PDF

Wood Cell Wall Nanoengineering toward Anisotropic, Strong, and Flexible Cellulosic Hydrogel Sensors.

Nano Lett

October 2024

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.

Achieving highly ionic conductive hydrogels from natural wood remains challenging owing to their insufficient surface area and low number of active sites on the cell wall. This study proposes a viable strategy to design a strong and anisotropic wood-based hydrogel through cell wall nanoengineering. By manipulating the microstructure of the wood cell wall, a flexible cellulosic hydrogel is achieved through Schiff base bonding via the polyacrylamide and cellulose molecular chains.

View Article and Find Full Text PDF

Dehydration regulates structural reorganization of dynamic hydrogels.

Nat Commun

August 2024

Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen, Germany.

The dehydration process is widely recognized as a significant phenomenon in nature. Hydrogels, which are important functional materials with high water content and crosslinked networks, encounter the issue of dehydration in their practical applications. Here, we report the distinctive anisotropic dehydration modality of dynamic hydrogels, which is fundamentally different from the more commonly observed isotropic dehydration of covalent hydrogels.

View Article and Find Full Text PDF

High-Strength, High-Swelling-Resistant, High-Sensitivity Hydrogel Sensor Prepared with Wood That Retains Lignin.

Biomacromolecules

March 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.

Wood-derived hydrogels possess satisfactory longitudinal strength but lack excellent swelling resistance and dry shrinkage resistance when achieving high anisotropy. In this study, we displayed the preparation of highly dimensional stable wood/polyacrylamide hydrogels (wood/PAM-Al). The alkali-treated wood retains lignin as the skeleton of the hydrogel.

View Article and Find Full Text PDF

Preparation of environmentally friendly, high strength, adhesion and stability hydrogel based on lignocellulose framework.

Int J Biol Macromol

April 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; China Jiangsu Key Open Laboratory of Wood Processing and Wood-Based Panel Technology, Nanjing, Jiangsu 210037, China. Electronic address:

Hydrogels are extensively utilized in the fields of electronic skin, environmental monitoring, biological dressings due to their excellent flexibility and conductivity. However, traditional hydrogel materials possess drawbacks such as environmental toxicity, low strength, poor stability, and water loss deactivation, which limited its frequent applications. Here, a flexible conductive hydrogel called wood-based DES hydrogel (WDH) with high strength, high adhesion, high stability, and high sensitivity was successfully synthesized by using environmentally friendly lignocellulose as skeleton and deep eutectic solvent as matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!