Unlocking the potential of β-limit dextrin: Preparation, structure, properties, and promising applications.

Carbohydr Polym

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China. Electronic address:

Published: March 2025

AI Article Synopsis

  • Starch has important industrial uses, but its performance is limited by issues like retrogradation and fast digestion.
  • By hydrolyzing native starch with β-amylase, β-limit dextrin (β-LD) and maltose are produced, with β-LD having a stable structure that helps avoid retrogradation and enhances solubility.
  • The review discusses ways to improve the production of β-LD, explore its additional benefits, and expand its applications in food and pharmaceuticals, offering valuable insights for its commercial use.

Article Abstract

Starch is a widely used and economically important polymer; however, its industrial applications are limited by certain shortcomings, such as retrogradation and high digestion rate. To overcome these limitations, native starches can be hydrolyzed by β-amylase, resulting in the production of β-limit dextrin (β-LD) and maltose as a co-product. β-LD retains the original inner core structure of its parent amylopectin and contains truncated external chains that is not prone to form exterior chain helical. The described molecular structures of β-LD impart unique physicochemical attributes, including prevention of retrogradation, high solubility, relatively low digestibility, etc. Compared with other dextrins, β-LD has a more defined structure and a larger molecular weight, but it still maintains high solubility, which endows β-LD with a wider range of potential applications in food and pharmaceutical industries. The considerations for improving preparation efficiency of β-LD, identifying additional functional traits, and expanding its industrial applications have been outlined along with future research directions. The insights provided in this review will be advantageous for the commercial production and utilization of β-LD in food industry to create value from native starch.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.123135DOI Listing

Publication Analysis

Top Keywords

β-limit dextrin
8
industrial applications
8
retrogradation high
8
high solubility
8
β-ld
7
unlocking potential
4
potential β-limit
4
dextrin preparation
4
preparation structure
4
structure properties
4

Similar Publications

The research aimed to assess the effect of polysaccharides (maltodextrin and β-cyclodextrin) on technological properties of low-lactose milk powder obtained by spray drying of β-galactosidase hydrolysed milk. Low-lactose milk powders i.e.

View Article and Find Full Text PDF

A β-cyclodextrin-based supramolecular modular system creating micellar carriers for codelivery of doxorubicin and siRNA for potential combined chemotherapy and immunotherapy.

Carbohydr Polym

March 2025

Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore. Electronic address:

The combination of chemotherapy and gene therapy holds promise in treating cancer. A key strategy is to use small interfering RNAs (siRNAs) to silence programmed death-ligand 1 (PD-L1) expression in cancer cells, disrupting tumor immune evasion and enhancing anticancer treatments, particularly when used in conjunction with chemotherapy drugs such as doxorubicin (Dox). However, effective codelivery of drugs and genes requires carefully designed carriers and complex synthesis procedures.

View Article and Find Full Text PDF

Cyclodextrins (CDs) are cyclic polysaccharides characterized by their unique hollow structure, making them highly effective carriers for pharmaceutical agents. CD-based delivery systems are extensively utilized to enhance drug stability, increase solubility, improve oral bioavailability, and facilitate controlled release and targeted delivery. This review initially provides a concise overview of nano drug delivery systems, followed by a detailed introduction of the structural features and benefits of CDs.

View Article and Find Full Text PDF

Engineered extracellular vesicles loaded in boronated cyclodextrin framework for pulmonary delivery.

Carbohydr Polym

March 2025

Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Shenyang Pharmaceutical University, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Extracellular vesicles (EVs) are promising therapeutic carriers for their ideal nano-size and intrinsic biocompatibility, while rapid clearance and limited targeting ability are the major setbacks of EVs. With minimal absorption into the systemic circulation, inhalation for pulmonary disease therapy minimizes off-target toxicity to other organs and offers a safe and effective treatment for respiratory disorders. Herein, a nano-grid carrier made of boronated cyclodextrin framework (BCF) was prepared for pH/HO responsive release of EVs.

View Article and Find Full Text PDF

In the present study, the stability of a supersaturated solution of indomethacin (IM) was evaluated in hydrophobically modified hydroxypropylmethylcellulose (HM-HPMC) solutions, with and without parent cyclodextrins (CDs). A highly supersaturated state of IM was maintained in the HM-HPMC solution and was further stabilized by the addition of α-CD and β-CD. Notably, the highest level of supersaturation was achieved in HM-HPMC/α-CD solution, which maintained a high concentration of IM for up to 120 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!