The major hurdle of xenotransplantation is the immune response triggered by human natural antibodies interacting with carbohydrate antigens on the transplanted animal organ. Specifically, terminal glycoprotein motifs such as galactose-α1,3-galactose (α-Gal) and N-glycolylneuraminic acid (Neu5Gc) are significant obstacles. Little is known about the abundance and compositions of asparagine-linked complex carbohydrates (N-glycans) carrying these motifs in mammalian organs. By studying heart, kidney, and liver tissues from pig, cattle, and sheep, we aimed to gain insights into the abundance and spatial distribution of α-Gal- or Neu5Gc-containing N-glycans. N-glycomes were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), MALDI-mass spectrometry imaging (MSI), and capillary electrophoresis-electrospray ionization (CE-ESI)-MS. Both α-Gal- and Neu5Gc-containing N-glycans were present in all samples, with α-Gal-modified N-glycans being the most abundant nonhuman carbohydrate motif. The abundance of N-glycans terminating with α-Gal or Neu5Gc was higher in heart and kidney samples than livers. MSI revealed kidneys had the highest glycosylation levels, and α-Gal-containing N-glycans were abundant in the kidney cortex but scarce in the medulla. This study enhances our understanding of α-Gal- and Neu5Gc-modified N-glycans in animal organs and may guide research on carbohydrate antigen-induced immune rejection in xenotransplantation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.123065 | DOI Listing |
Anal Chem
January 2025
Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala ,Sweden.
Multiomics analysis of single tissue sections using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) provides comprehensive molecular insights. However, optimizing tissue sample preparation for MALDI-MSI to achieve high sensitivity and reproducibility for various biomolecules, such as lipids, -glycans, and tryptic peptides, presents a significant challenge. This study introduces a robust and reproducible protocol for the comprehensive sequential analysis of the latter molecules using MALDI-MSI in fresh-frozen rodent brain tissue samples.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
The major hurdle of xenotransplantation is the immune response triggered by human natural antibodies interacting with carbohydrate antigens on the transplanted animal organ. Specifically, terminal glycoprotein motifs such as galactose-α1,3-galactose (α-Gal) and N-glycolylneuraminic acid (Neu5Gc) are significant obstacles. Little is known about the abundance and compositions of asparagine-linked complex carbohydrates (N-glycans) carrying these motifs in mammalian organs.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.
Background: Hypomorphic mutations in the () gene cause a glycosylation disorder that leads to immunodeficiency. It is often associated with recurrent infections and atopy. The exact etiology of this condition remains unclear.
View Article and Find Full Text PDFViruses
November 2024
Laboratory for Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium.
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in young children, elderly and immunocompromised patients worldwide. The RSV fusion (F) protein, which has 5-6 N-glycosylation sites depending on the strain, is a major target for vaccine development. Two to three of these sites are located in the p27 peptide, which is considered absent in virions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro 76230, Querétaro, Mexico.
Recently, we reported that a recombinant Tepary bean () lectin (rTBL-1) induces apoptosis in colon cancer cell lines and that cytotoxicity was related to differential recognition of β1-6 branched -glycans. Sequencing analysis and resolution of the rTBL-1 3D structure suggest that glycan specificity could be strongly influenced by two arginine residues, R103 and R130, located in the carbohydrate binding pocket. The aim of this work was to determine the contribution of these residues towards cytotoxic activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!