Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ionic conductive hydrogels have attracted great attention due to their good flexibility and conductivity in flexible electronic devices. However, because of the icing and water loss problems, the compatibility issue between the mechanical properties and conductivity of hydrogel electrolytes over a wide temperature range remains extremely challenging to achieve. Although, antifreezing/water-retaining additives could alleviate these problems, the reduced performance and complex preparation methods seriously limit their development. In this work, a simple strategy without additives was provided to prepare an ionic conductive cellulose hydrogel (ICH) in one step through molten salt hydrate. The hydrogel featured controllable mechanical properties (0.19 MPa - 0.67 MPa), high ionic conductivity (78.96 mS/cm), excellent freezing resistance (-80 °C). More importantly, due to the existing metal salts component, the ICH exhibited long-term stability in water-retention ability (75.6 %, after 90 days) and ionic conductivity (85 %, after 90 days) over a wide working temperature range (-80 °C to 40 °C). Benefiting from these advantages, the ICH exhibited excellent electromechanical performance in human movement detection and movement direction identification, indicating a promising apply for flexible electronic device.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.122936 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!