A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sugar boiling pre-treatment improves radio frequency explosion puffing quality on modifying the physicochemical and functional properties of purple sweet potato flour. | LitMetric

Sugar boiling pre-treatment improves radio frequency explosion puffing quality on modifying the physicochemical and functional properties of purple sweet potato flour.

Int J Biol Macromol

Northwest A&F University, College of Food Science and Engineering, Yangling, Shanxi 712100, China; School of Food Science, Henan Institute of Science and Technology, 90 Eastern Hualan Avenue, Xinxiang 453003, China. Electronic address:

Published: January 2025

The effects of sugar boiling pretreatment (SBP) with different maltitol concentrations (20 %, 30 %, and 40 %) and boiling time (0 - 6 min) on the physicochemical and functional properties of purple sweet potato flour and the radiofrequency explosion puffing (RFEP) quality were investigated. The results showed that the volume ratio, crispness, anthocyanin retention rate and overall acceptability of the samples were maximized after boiling for 6 min at 40 % maltitol concentration achieving increases of 78.63 %, 437.50 %, 392.25 % and 552.94 %, respectively compared to the control (p < 0.05). Fourier transform-infrared spectroscopy and X-ray diffraction analyses revealed that the flour underwent hydrogen bond breaking and formed hydrogen bonds with maltitol at high temperatures, forming maltitol starch-protein / lipid complexes, resulting in decreased crystallinity, short-range ordering, random coil, -helix and enthalpy, while the non-crystalline region area and -sheet increased. Additionally, the viscosity and storage modulus of the flour increased following pregelatinization. Conversely, as maltitol concentration increased, both viscosity and storage modulus decreased, facilitating the expansion of puffing volume due to the instantaneous total drainage of water upon pressure release. Furthermore, SBP effectively preserved the color and anthocyanin content of the chips. These findings may provide valuable insights for regulating oil-free puffing quality of starchy foods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.139543DOI Listing

Publication Analysis

Top Keywords

sugar boiling
8
explosion puffing
8
physicochemical functional
8
functional properties
8
properties purple
8
purple sweet
8
sweet potato
8
potato flour
8
boiling pre-treatment
4
pre-treatment improves
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!