Solid polymer batteries (SPEs) are highly desirable for energy storage because of the urgent need for higher energy density and safer lithium ion batteries (LIBs). In this work, the single-ion lithium salt PAEK-LiCPSI was synthesized by grafting 3-chloropropanesulfonyl trifluoromethanesulimide lithium (LiCPSI) onto poly(aryl ether ketone) (PAEK). Nanocellulose (NCC), PAEK-LiCPSI, and poly(vinylidene fluoride) (PVDF-HFP) were compounded to obtain NCC reinforced high-performance nanofiber composite polymer electrolytes (NCC/PAEK/PVDF) through electrospinning, which presented tensile strength of 15.35 MPa, ionic conductivity of 1.13 × 10 S cm, and Li transfer number as high as 0.80 at 25 °C. The assembled LIBs with NCC/PAEK/PVDF illustrated an initial discharge specific capacity of 155.2 mAh g at 0.2C, and the capacity retention rate was close to 93 % after cycling 700 cycles at 25 °C. Furthermore, its initial specific discharge capacity at -20 °C was 103.4 mAh g, and can cycle over 300 cycles. The NCC with sulfonic acid group reinforced the mechanical performance, promoted the dissociation of Li, and synergized with PAEK-LiCPSI and PVDF-HFP to form a 3D nanofiber ionic bridge network through hydrogen bond, which promoted the more stable and faster Li transportation. This work suggested that the NCC/PAEK/PVDF can be a good choice of solid polymer electrolytes (SPE) for the next generation of LIBs, even working at low-temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.139560 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!