Ras S89D mutation induced allosteric changes that promoted its nucleotide exchange and signaling activation.

Int J Biol Macromol

Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China. Electronic address:

Published: January 2025

The small GTPase Ras is among the most frequently mutated genes and its mutations often drive oncogenesis across various cancers. While the role of NRas phosphorylation at S89 in the context of a Q61R mutation in melanoma genesis remains controversial, the impact of S89 phosphorylation on NRas function has not been fully elucidated. In this study, we employed the S89D phosphorylation-mimetic mutation and demonstrated that the S89D mutation alone activated all Ras isoforms by increasing the GTP-bound population, thereby promoting ERK phosphorylation and cell proliferation. The S89D mutant retained unaltered hydrolysis kinetics and GTP/GDP relative affinity but exhibited an accelerated intrinsic nucleotide exchange rate, due to impaired nucleotide binding. A 1.2 Å crystal structure of the S89D mutant revealed substantial local conformational changes, as well as alterations propagating to the nucleotide-binding pocket, providing a structural basis for the observed biochemical properties. Collectively, these findings established that the S89D mutation activated Ras by enhancing intrinsic nucleotide exchange, offering new insights into Ras allostery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.139538DOI Listing

Publication Analysis

Top Keywords

s89d mutation
12
nucleotide exchange
12
mutation activated
8
activated ras
8
s89d mutant
8
intrinsic nucleotide
8
ras
5
mutation
5
s89d
5
ras s89d
4

Similar Publications

Ras S89D mutation induced allosteric changes that promoted its nucleotide exchange and signaling activation.

Int J Biol Macromol

January 2025

Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China. Electronic address:

The small GTPase Ras is among the most frequently mutated genes and its mutations often drive oncogenesis across various cancers. While the role of NRas phosphorylation at S89 in the context of a Q61R mutation in melanoma genesis remains controversial, the impact of S89 phosphorylation on NRas function has not been fully elucidated. In this study, we employed the S89D phosphorylation-mimetic mutation and demonstrated that the S89D mutation alone activated all Ras isoforms by increasing the GTP-bound population, thereby promoting ERK phosphorylation and cell proliferation.

View Article and Find Full Text PDF

Characterization of amino acid residues within the N-terminal region of Ubc9 that play a role in Ubc9 nuclear localization.

Biochem Biophys Res Commun

February 2015

Department of Biological Sciences, Wayne State University, 5947 Gullen Mall, Detroit, MI 48202, USA. Electronic address:

As the sole E2 enzyme for SUMOylation, Ubc9 is predominantly nuclear. However, the underlying mechanisms of Ubc9 nuclear localization are still not well understood. Here we show that RNAi-depletion of Imp13, an importin known to mediate Ubc9 nuclear import, reduces both Ubc9 nuclear accumulation and global SUMOylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!