A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Soil aggregation alterations under soil microplastic and biochar addition and aging process. | LitMetric

Soil aggregation alterations under soil microplastic and biochar addition and aging process.

Environ Pollut

School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, 430072, China.

Published: January 2025

Soil microplastics (MPs) are a substantial threat to soil health, particularly by disrupting soil aggregation. Additionally, MPs undergo aging processes in the soil, which may significantly alter their long-term impacts on soil structure. To investigate these effects, we conducted an eight-month soil incubation experiment, examining the influence of MPs and their aging on soil aggregation. The experiment utilized a factorial design with various combinations of MPs and biochar additions: 1% by weight of 1000-mesh polyethylene and polypropylene MPs, and 5-mm biochar, resulting in six treatment groups: [CK], [PE], [PP], [Biochar], [PE+biochar], and [PP+biochar]. Our findings revealed that both MPs and biochar underwent aging throughout the incubation, evidenced by the formation of oxygen-containing functional groups on their surfaces. Microplastics, particularly polyethylene, primarily affected the 0.5-1 mm and >2 mm aggregate fractions, with average reductions of 21% and 77%, respectively. These adverse effects intensified with the aging of MPs. Contrary to expectations, the addition of biochar was found to exacerbate the negative impacts of MPs on the 0.25-0.5 mm aggregates, with a decrease of 11% associated with PE MPs. The influence of biochar on mitigating the damage caused by MPs to soil aggregation is dependent on aggregate size.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2025.125655DOI Listing

Publication Analysis

Top Keywords

soil aggregation
16
soil
10
mps
10
mps biochar
8
biochar
6
aging
5
aggregation alterations
4
alterations soil
4
soil microplastic
4
microplastic biochar
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!