Comprehending the biosensing mechanism of the biosensor interface is crucial for sensor development, yet accurately reflecting interfacial interactions within actual detection environments remains an unsolved challenge. An operando photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) biosensing platform was developed, capable of simultaneously capturing photocurrent and SERS signals, allowing operando characterization of the interfacial biosensing behavior. Porphyrin-based MOFs (Zr-MOF) served as bifunctional nanotags, providing a photocurrent and stable Raman signal output under 532 nm laser irradiation. Aptamer was used to bridge the Zr-MOF and the silver-encased gold nanodumbbells (AuNDs@AgNPs). The simultaneous in situ acquisition of target-induced PEC and SERS signal responses facilitated the correlation of electron transfer information from the photocurrent with the distance information from the SERS signal. It revealed the biosensing mechanism in which target-induced aptamer conformational bending drove the Zr-MOF to approach the electrode. However, the increase in charge transfer observed through conventional electrochemical methods contradicts the conclusions drawn from the operando PEC-SERS analysis. Comprehensive analysis indicated that redox probes introduced during the non-in-situ measurement process became adsorbed within the MOF pores, potentially affecting the judgment of the biosensing mechanism. In addition, the operando PEC-SERS biosensor simultaneously obtained two independent signals, providing self-verification to improve the accuracy and reliability of patulin detection. The linear ranges were 1 pg mL-10 ng mL for the PEC method and 1 pg mL-100 ng mL for the SERS method, respectively. This work provides a powerful tool for determining the interface characteristics of biosensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c05669 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, South Korea.
Understanding plasmon damping in gold nanorods (AuNRs) is crucial for optimizing their use in photochemical processes and biosensing. This study used dark-field microscopy and spectroscopy to explore plasmon damping in single AuNRs on graphene monolayers (AuNR@GL) with pyridine derivatives as adsorbates. The Au-graphene heterostructure caused a Fermi-level downshift, making graphene a dominant electron acceptor.
View Article and Find Full Text PDFAnal Chem
January 2025
Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
Comprehending the biosensing mechanism of the biosensor interface is crucial for sensor development, yet accurately reflecting interfacial interactions within actual detection environments remains an unsolved challenge. An operando photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) biosensing platform was developed, capable of simultaneously capturing photocurrent and SERS signals, allowing operando characterization of the interfacial biosensing behavior. Porphyrin-based MOFs (Zr-MOF) served as bifunctional nanotags, providing a photocurrent and stable Raman signal output under 532 nm laser irradiation.
View Article and Find Full Text PDFChem Phys Lipids
January 2025
Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellón, Spain. Electronic address:
We present an in-depth electrophysiological analysis of Tse5, a pore-forming toxin (PFT) delivered by the type VI secretion system (T6SS) of Pseudomonas aeruginosa. The T6SS is a sophisticated bacterial secretion system that injects toxic effector proteins into competing bacteria or host cells, providing a competitive advantage by disabling other microbes and modulating their environment. Our findings highlight the dependency of Tse5 insertion on membrane charge and electrolyte concentration, suggesting an in vivo effect from the periplasmic space.
View Article and Find Full Text PDFJ Biophotonics
January 2025
Faculty of Physics Science and Technology, Guangxi Normal University, Guilin, China.
Genetic information sensors play a pivotal role in the biomedical field. The detection of deoxyribonucleic acid (DNA) is achieved experimentally using an optical microfiber interferometric sensor, which operates based on an ion-regulation sensitivity enhancement mechanism. The optical microfiber is fabricated by drawing optical fiber into a diameter of less than 10 μm via the melting and tapering technique.
View Article and Find Full Text PDFLab Chip
January 2025
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
Nucleic acid testing (NAT) is widely considered the gold standard in analytical fields, with applications spanning environmental monitoring, forensic science and clinical diagnostics, among others. However, its widespread use is often constrained by complicated assay procedures, the need for specialized equipment, and the complexity of reagent handling. In this study, we demonstrate a fully integrated 3D-printed biosensensing device employing a CRISPR/Cas12a-based dual-enzymatic mechanism for highly sensitive and user-friendly nucleic acid detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!