Water scarcity in the Mediterranean area has increased the number of intermittent rivers. Recently, hyporheic zones (HZ) of intermittent rivers have gained attention since a substantial part of the stream's natural purification capacity is located within these zones. Thus, understanding the flow dynamics in HZs is crucial for gaining insights into the degradation of organic micropollutants. A lab-scale study using column experiments was conducted in an attempt to elucidate the environmental processes accounting for the biodegradation capacity of the HZ under flow intermittency. A mixture of six compounds including pesticides (chloranthraniliprole, fluopyram and trifloxystrobin) and pharmaceuticals (venlafaxine, amisulpride and paroxetine) spiked at 1 μg/L level was used for degradation kinetic studies and at 1 mg/L for transformation products identification using suspect/non-target liquid chromatography high-resolution mass spectrometry approaches. The experiments lasted 60 days, divided into two 14-day phases: one before and one after a 5-week desiccation period. Bacterial community was charaterized by high-throughput DNA sequencing. The results suggested that intermittent flows stimulated the biodegradation of three compounds namely fluopyram, trifloxystrobin and venlafaxine, showing a large range of biodegradation profiles in batch water/sediment testing system according to OECD 308 tests. Biodegradation rate enhancement was ascribed to the occurrence of additional transformation routes after the desiccation period of river sediment, with the formation of new transformation products reported for the first time in the present work. 16S rDNA sequencing revealed that the desiccation period favored the growth of nitrifying and denitrifying bacteria which could partially explain the emergence of the new transformation pathways and most specifically those leading to N-oxide derivatives. Identification of transformation products also revealed that reductive transformation routes were relevant for this study, being dehydrogenation, dehalogenation, ether bond cleavage and sulfone reduction into sulphide important reactions. These results suggest that the intermittent flow conditions can influence the HZ biodegradation capacity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2025.144082 | DOI Listing |
ACS Agric Sci Technol
January 2025
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
Plant infiltration techniques, particularly agroinfiltration, have transformed plant science and biotechnology by enabling transient gene expression for genetic engineering of plants or genomic studies. Recently, the use of infiltration has expanded to introduce nanomaterials and polymers in plants to enable nonnative functionalities. Despite its wide use, the impact of the infiltration process on plant physiology needs to be better understood.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University Taif 21944 Saudi Arabia.
Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China.
This study investigates the enhancement of gelatin (GEL) films using hydroxypropyl methylcellulose (HPMC) and carboxymethyl cellulose (CMC) for edible film packaging applications. Although GEL is biocompatible and cost-effective, its limited mechanical strength presents significant challenges for practical applications. The findings indicate that CMC effectively increases tensile strength (TS), while HPMC improves elongation at break (EAB) and hydrophilicity.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315516, Ilam, Iran.
This study highlights an innovative approach to catalysis by utilizing natural asphalt as a support material for developing carbon-based catalysts. By leveraging the principles of green chemistry, the research aims to create recyclable and environmentally friendly heterogeneous catalytic systems. This aligns with the growing demand for greener technologies and the use of biocompatible materials in chemical processes.
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Life Sciences, Northwest Agricultural and Forestry University, Yangling, Shaanxi, China.
As an efficient gene editing tool, the CRISPR/Cas9 system has been widely employed to investigate and regulate the biosynthetic pathways of active ingredients in medicinal plants. CRISPR technology holds significant potential for enhancing both the yield and quality of active ingredients in medicinal plants. By precisely regulating the expression of key enzymes and transcription factors, CRISPR technology not only deepens our understanding of secondary metabolic pathways in medicinal plants but also opens new avenues for drug development and the modernization of traditional Chinese medicine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!