Metabolic and epigenetic regulation of macrophage polarization in atherosclerosis: molecular mechanisms and targeted therapies.

Pharmacol Res

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China. Electronic address:

Published: January 2025

Atherosclerosis, a multifactorial progressive inflammatory disease, is the common pathology underlying cardiovascular and cerebrovascular diseases. The macrophage plasticity is involved in the pathogenesis of atherosclerosis. With the advance of metabolomics and epigenetics, metabolites/metabolic and epigenetic modification such as DNA methylation, histone modification and noncoding RNA, play a crucial role in macrophage polarization and the progression of atherosclerosis. Herein, we provide a comprehensive review of the essential role of metabolic and epigenetic regulation, as well as the crosstalk between the two in regulating macrophage polarization in atherosclerosis. We also highlight the potential therapeutic strategies of regulating macrophage polarization via epigenetic and metabolic modifications for atherosclerosis, and offer recommendations to advance our knowledge of the roles of metabolic-epigenetic crosstalk in macrophage polarization in the context of atherosclerosis. Fundamental studies that elucidate the mechanisms by which metabolic and epigenetic regulation of macrophage polarization influence atherosclerosis will pave the way for novel therapeutic approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2025.107588DOI Listing

Publication Analysis

Top Keywords

macrophage polarization
24
metabolic epigenetic
12
epigenetic regulation
12
regulation macrophage
8
atherosclerosis
8
polarization atherosclerosis
8
regulating macrophage
8
macrophage
7
polarization
6
metabolic
4

Similar Publications

Background: SHIP1 is a phosphatidyl inositol phosphatase encoded by INPP5D, which has been identified as a risk gene for Alzheimer's disease (AD). SHIP1 is expressed in microglia, the resident macrophage in brain. It is a complex, multidomain protein that acts as a negative regulator downstream from TREM2.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) is a high-mortality lung disease with limited treatment options, highlighting the need for new therapies. Cyclin-dependent kinase 8 (CDK8) is a promising target due to its role in regulating transcription via the TGF-β/Smad pathway, though CDK8 inhibitors have not been thoroughly studied for PF. This study aims to evaluate the potential of E966-0530-45418, a novel CDK8 inhibitor, in mitigating PF progression and explores its underlying mechanisms.

View Article and Find Full Text PDF

USP25 stabilizes STAT6 to promote IL-4-induced macrophage M2 polarization and fibrosis.

Int J Biol Sci

January 2025

Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

As a leading cause of morbidity and mortality, fibrosis is the common pathway of various chronic inflammatory diseases in organs and causes death in a large number of patients. It can destroy the structure and function of organs and ultimately lead to organ failure, which is a major cause of disability and death in many diseases. However, the regulatory mechanism of organ fibrosis is not well clear and the lack of effective drugs and treatments, which seriously endangers human health and safety.

View Article and Find Full Text PDF

Copper homeostasis; A rapier between mycobacteria and macrophages.

FASEB Bioadv

January 2025

Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics The First Dongguan Affiliated Hospital, Guangdong Medical University Dongguan Guangdong China.

Copper is a vital trace element crucial for mediating interactions between and macrophages. Within these immune cells, copper modulates oxidative stress responses and signaling pathways, enhancing macrophage immune functions and facilitating clearance. Conversely, copper may promote escape from macrophages through various mechanisms: inhibiting macrophage activity, diminishing phagocytic and bactericidal capacities, and supporting survival and proliferation.

View Article and Find Full Text PDF

Purpose: Serum uric acid (SUA) is primarily produced through the hydrolysis of purines in the liver, with its excretion largely handled by the kidneys. Urate transporter 1 (URAT1) inhibitors are known to enhance uric acid elimination via the kidneys, but they also increase the risk of kidney stone formation. Currently, xanthine oxidase (XO) inhibitors are the predominant uric-lowering medications on the market.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!