Biological activated carbon (BAC) filtration is vital for the abatement of micropollutants in drinking water. However, limited information is available on contaminant removal in BAC filters with aged media (e.g., >6 year) which are commonly operated at water treatment plants, and mechanistic insights into linkages among media age, microbial community, and contaminant removal still lack. In this study, the effects of media age on the abatement of eight micropollutants with various functional groups were investigated. The abatement of micropollutants decreased with increasing media age. Pseudo-first-order rate constants for contaminant removal in 6- and 15-year BAC were (0.3-3.1) × 10 and (0.2-2.6) × 10 s, compared to (0.9-4.3) × 10 s in 3.5-year BAC filter. Biosorption- and biodegradation-dominated contaminant removal depended on protein and adenosine triphosphate concentrations in biofilm, respectively. Micro-computed tomography revealed the formation of biofilm-dominated clogging with rare voids and channels in 15-year BAC, resulting in low permeability. The decreased permeability led to deficient dissolved O and nutrient supply and thus changed microbial community assembly process, reducing community diversity and function. Core members including families of Saprospiraceae, Chitinophagaceae, Rhodocyclaceae, Comamonadaceae, and Nitrospiraceae in 3.5-year BAC were affiliated with active aerobic metabolism and contaminant biodegradation capacity. Abundances of these functional microbes and genes decreased with increasing media age. Simultaneously, protein in biofilm decreased, thereby decreasing biosorption. The findings of this study reveal the pivotal role of permeability in shaping microbial community and function and the corresponding micropollutant removal in BAC filters with aged media.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.123059 | DOI Listing |
Water Res
December 2024
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Biological activated carbon (BAC) filtration is vital for the abatement of micropollutants in drinking water. However, limited information is available on contaminant removal in BAC filters with aged media (e.g.
View Article and Find Full Text PDFWater Res
December 2024
Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China; Institute of Sun Yat-Sen University in Shenzhen, PR China. Electronic address:
Electrochemical oxidation process (EOP) is promising for micropollutant degradation in water treatment, where chloride ions (Cl) are inevitable in aqueous systems, leading to the EOP/Cl system. The oxidation of Cl at anodes generates reactive chlorine species (RCS), including heterogeneous chlorine species (Cl), homogeneous free available chlorine (FAC), chlorine dioxide (ClO), and chlorine radicals (CRs). This study developed a method to differentiate various RCS responsible for the removal of carbamazepine in EOP/Cl using the RuO/IrO-Ti anode.
View Article and Find Full Text PDFSci Total Environ
October 2023
College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
Sulfite autoxidation in combination with the cobalt-based heterogeneous activators, has recently emerged as the efficient sulfate radical (SO) generation process for organic micropollutant abatement in the water and wastewater treatment, yet the sluggish >Co(II)/Co(III) redox cycling currently compromises the efficacy of radical generation and the potential applications. Herein, regarding that the reductive W(IV) species in WS can modulate the >Co(II)/Co(III) redox cycling in the advanced oxidation processes, confinement of cobalt with WS (Co-WS) is designed and characterized. The Co-WS/sulfite process achieves an ultrafast tetracycline (TC) abatement (~100 % abatement of TC within 1 min) under circumneutral conditions with lower dosage of sulfite and activator, outperforming the current cobalt-based heterogeneous counterparts.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Engineering, University of Northern British Columbia, Prince George, BC V2N AZ9, Canada. Electronic address:
J Hazard Mater
December 2024
Institute of Carbon Peaking and Carbon Neutralization, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314000, China; Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 515200, China. Electronic address:
This study systematically investigated the direct activation of chlorine by visible light emitting diode (Vis-LED). Vis-LED could effectively activate chlorine to degrade micropollutants with degradation efficiency and pseudo-first-order degradation rate constant range of 64.3-100 % and 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!