Photodegradation of steroid hormone micropollutants with palladium-porphyrin coated porous PTFE of varied morphological and optical properties.

Water Res

Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:

Published: December 2024

In flow-through reactors, the photodegradation rate can be improved by enhancing contact and increasing the photocatalyst loading. Both can be attained with a higher surface-to-volume ratio. While previous studies focused on thin membranes (30 - 130 µm) with small pore sizes of 20 - 650 nm, this work employed poly(tetrafluoroethylene) (PTFE) supports, of which pore sizes are in the order of 10 µm, while the porosities and thicknesses are variable (22.5 - 45.3 % and 0.2 - 3 mm, respectively). These porous materials were anticipated to allow a higher loading of porphyrin photosensitisers and better light penetration for subsequent photodegradation of steroid hormone micropollutants via singlet oxygen (O) generation. The reactor surface refers to the surface within the PTFE pores, while the reactor volume is the total void space inside these pores. The surface-to-volume ratios between 10 and 10 m/m are higher than those of typical microreactors (10 to 10 m/m). The weighted average light transmittance varied from 38 % with the thinnest and most porous support to 4.8 % with the thickest support. Good light penetration combined with minimal absorption by PTFE enhanced the light utilisation of the porphyrins when coated in the porous supports. Changes in the support porosity of the coated supports minimally affected steroid hormone removal, because the collision frequency in the very large pores remained relatively constant. However, varying the support thickness, porphyrin loading (0.3 - 7.7 μmol/g), and water flux (150 - 3000 L/m.h), hence the resulting hydraulic residence time, influenced the collision frequency and steroid hormone removal. Results showed that the supports did not outperform membranes most likely because the larger pore size in the former limited contact between the hormones and O. From photostability testing of the pristine supports, perfluoroalkyl substances (PFAS) released from the supports were found at 10 - 300 ng/L concentrations during accelerated ageing. While PFAS formation was detectable, the quantities during water treatment operations would be extremely low. In summary, this study elucidates the capability and limitations of porous supports coated with photosensitisers to remove waterborne micropollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.123034DOI Listing

Publication Analysis

Top Keywords

steroid hormone
16
photodegradation steroid
8
hormone micropollutants
8
coated porous
8
pore sizes
8
light penetration
8
porous supports
8
hormone removal
8
collision frequency
8
supports
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!