A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A cognitive digital twin approach to improving driver compliance and accident prevention. | LitMetric

A cognitive digital twin approach to improving driver compliance and accident prevention.

Accid Anal Prev

School of Information Science and Technology, ShanghaiTech University, Shanghai, China; Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai, China. Electronic address:

Published: January 2025

Advanced Driver Assistance Systems (ADAS) are crucial for enhancing driving safety by alerting drivers to unrecognized risks. However, traditional ADAS often fail to account for individual decision-making processes, including drivers' perceptions of the environment and personal driving styles, which can lead to non-compliance with the provided assistance. This paper introduces a novel Cognitive-Digital-Twin-based Driving Assistance System (CDAS), leveraging a personalized driving decision model that dynamically updates based on the driver's control and observation actions. By incorporating these individual behaviors, CDAS can tailor its assistance options to predict and adapt to the driver's responses across various scenarios, ensuring both the necessity and safety of its interventions. Through two comprehensive experimental validations, we demonstrate that the cognitive digital twin (CDT) closely aligns with actual driver observation behaviors. By incorporating additional driver observation actions - an input not readily leveraged by data-driven methods without large annotated datasets - the CDT also achieves superior lane-changing predictions compared to deep learning classifiers relying solely on environmental states. Furthermore, CDAS significantly outperforms traditional ADAS in terms of risk reduction and user acceptance, showcasing its potential to enhance driving safety and adaptability effectively. These findings suggest that CDAS represents a substantial advancement towards more personalized and effective driving assistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aap.2024.107913DOI Listing

Publication Analysis

Top Keywords

cognitive digital
8
digital twin
8
driving safety
8
traditional adas
8
driving assistance
8
observation actions
8
driver observation
8
driving
6
assistance
5
twin approach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!