T cell therapy for solid tumors faces significant challenges due to the immune off-target attack caused by the loss of tumor surface antigens and inactivation in acidic tumor microenvironment (TME). Herein, we developed a bifunctional immunomodulator (MO@NAL) by loading ovalbumin (OVA; model antigen) mRNA (mOVA) onto lysozyme-coated layered double hydroxide nano-aluminum adjuvant (NA). The NA's inherent alkalinity effectively neutralizes the excess acid within the TME and suppresses regulatory T cells, creating a favorable microenvironment to enhance cytotoxic T cell infiltration and activation in tumors. Particularly, once internalization by tumor cells, MO@NAL efficiently tags the tumor cell surface with OVA through the carried mOVA, providing targets for recruiting and directing the antigen-specific cytotoxic T cells to destroy tumor cells. In mice pre-vaccinated with the OVA vaccine, intratumoral administration of MO@NAL rapidly awakens OVA-specific immune memory, rapidly and effectively inhibiting the progression of colon tumors and melanoma at both early and advanced stages. In non-pre-vaccinated mice, combining MO@NAL with the OVA therapeutic vaccine or OVA-specific adoptive T cell transfusion similarly achieves robust solid tumor suppression. These findings thus underscore the potential of MO@NAL as an effective and safe immunomodulator for enhancing cytotoxic T cell responses and providing timely intervention in solid tumor progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2025.123085 | DOI Listing |
Biomaterials
January 2025
Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China; School of Medicine, Hangzhou City University, Hangzhou, 310015, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China. Electronic address:
T cell therapy for solid tumors faces significant challenges due to the immune off-target attack caused by the loss of tumor surface antigens and inactivation in acidic tumor microenvironment (TME). Herein, we developed a bifunctional immunomodulator (MO@NAL) by loading ovalbumin (OVA; model antigen) mRNA (mOVA) onto lysozyme-coated layered double hydroxide nano-aluminum adjuvant (NA). The NA's inherent alkalinity effectively neutralizes the excess acid within the TME and suppresses regulatory T cells, creating a favorable microenvironment to enhance cytotoxic T cell infiltration and activation in tumors.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
School of Human Sciences, London Metropolitan University, London, UK.
Mpox, formerly known as monkeypox, is a zoonotic disease caused by the Mpox virus (MPXV), which has recently attracted global attention due to its potential for widespread outbreaks. Initially identified in 1958, MPXV primarily spreads to humans through contact with infected wild animals, particularly rodents. Historically confined to Africa, the virus has expanded beyond endemic regions, with notable outbreaks in Europe and North America in 2022, especially among men who have sex with men (MSM).
View Article and Find Full Text PDFFront Immunol
January 2025
Division of Rheumatology, University of Washington, Seattle, WA, United States.
Introduction: Neutrophil activation is important in systemic lupus erythematosus (SLE). We previously demonstrated that ribonucleoprotein (RNP) immune complexes (ICs) promoted neutrophil activation in a TLR7/8-dependent manner. However, it remains unclear if this mechanism occurs in patients.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, 214-28, Sweden.
We have previously demonstrated that the intracellular, non-GPI anchored CD59 isoforms IRIS-1 and IRIS-2 (Isoforms Rescuing Insulin Secretion 1 and 2) are necessary for insulin secretion from pancreatic β-cells. While investigating their expression across human tissues, we identified IRIS-1 and IRIS-2 mRNA in the human brain, though their protein expression and function remained unclear. This study shows the presence of both IRIS-1 and 2 proteins in the human brain, specifically in neurons and astrocytes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Program in Genetics, Molecular, and Cellular Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111.
CAG/CTG repeats are prone to expansion, causing several inherited human diseases. The initiating sources of DNA damage which lead to inaccurate repair of the repeat tract to cause expansions are not fully understood. Expansion-prone CAG/CTG repeats are actively transcribed and prone to forming stable R-loops with hairpin structures forming on the displaced single-stranded DNA (S-loops).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!