Integration of EMAP-II-targeted anti-angiogenesis and photodynamic therapy using zinc phthalocyanine nanosystem for enhanced cancer treatment.

Colloids Surf B Biointerfaces

College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; The National & Local Joint Engineering Research Center on Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, Fujian 350116, China. Electronic address:

Published: January 2025

Angiogenesis provides essential nutrients and oxygen to tumors during tumorigenesis, facilitating invasion and metastasis. Consequently, inhibiting tumor angiogenesis is an established strategy in anti-cancer therapy. In this study, we engineered a dual-function nanosystem with both antiangiogenic and photodynamic properties. We transformed the hydrophobic photosensitizer zinc phthalocyanine (PS) into a hydrophilic form via protein renaturation, resulting in a novel photosensitizer: Monocyte-Activating Polypeptide-II (EMAP-II:PS@NPs). Characterization through dynamic light scattering (DLS) and UV-vis spectroscopy showed that these nanoparticles exhibited uniform size and stability, and enhanced solubility. We further demonstrated that EMAP-II:PS@NPs effectively target tumor vascular endothelia causing intracellular photodynamic cytotoxicity. Notably, EMAP-II:PS@NPs achieved effective ablation of solid tumors at significantly reduced dosages of drugs compared to conventional therapies, due to their potent apoptotic effects on light-exposed cells. This study highlights the potential of combining anti-angiogenic activity with phototherapy, paving the way for innovative cancer treatment strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2024.114493DOI Listing

Publication Analysis

Top Keywords

zinc phthalocyanine
8
cancer treatment
8
integration emap-ii-targeted
4
emap-ii-targeted anti-angiogenesis
4
anti-angiogenesis photodynamic
4
photodynamic therapy
4
therapy zinc
4
phthalocyanine nanosystem
4
nanosystem enhanced
4
enhanced cancer
4

Similar Publications

A new nonperipheral zinc(II) phthalocyanine bearing octa carboxylic acid ethyl ester derivative substituted triazole attached propylmercaptothiobenzylmercapto derivative was synthesized via the tetramerization reaction of phthalonitrile. The photochemical in vitro photodynamic activity of zinc(II) phthalocyanine (), such as human nonsmall cell lung carcinoma cell lines, was investigated in this study. The singlet oxygen generation property of novel zinc(II) phthalocyanine () was also examined due to the significantly high singlet oxygen quantum yield of (F = 0.

View Article and Find Full Text PDF

Integration of EMAP-II-targeted anti-angiogenesis and photodynamic therapy using zinc phthalocyanine nanosystem for enhanced cancer treatment.

Colloids Surf B Biointerfaces

January 2025

College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; The National & Local Joint Engineering Research Center on Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, Fujian 350116, China. Electronic address:

Angiogenesis provides essential nutrients and oxygen to tumors during tumorigenesis, facilitating invasion and metastasis. Consequently, inhibiting tumor angiogenesis is an established strategy in anti-cancer therapy. In this study, we engineered a dual-function nanosystem with both antiangiogenic and photodynamic properties.

View Article and Find Full Text PDF

Photodynamic inactivation (PDI) has been revealed as a valuable approach against viral infections because of the fast therapeutic effect and low possibility of resistance development. The photodynamic inhibition of the infectivity of human herpes simplex virus type 1 (HSV-1) strain Victoria at different stages of its reproduction was studied. PDI activity was determined on extracellular virions, on the stage of their adsorption to the Madin-Darby bovine kidney (MDBK) cell line and inhibition of the viral replication stage by application of two tetra-methylpyridiloxy substituted gallium and zinc phthalocyanines (ZnPcMe and GaPcMe) upon 660 nm light exposure with a light-emitting diode (LED 660 nm).

View Article and Find Full Text PDF

"Alkyl-Substituted Phenoxy" Spacer Strategy: Antiaggregated and Highly Soluble Zinc Phthalocyanines for Color Films.

ACS Omega

December 2024

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.

A series of zinc phthalocyanine derivatives (ZnPcs) were designed by introducing different volumes of steric hindrance groups (chlorine atom, n-propyloxy, isopropyloxy, n-butoxy, isobutoxy, -butoxy, 2,4-di--butylphenoxy, 2,4-di--pentylphenoxy) on the peripheral and nonperipheral positions of phthalocyanine. Density functional theory (DFT) calculations presented that the substitution of sterically hindered 2,4-di--butylphenoxy or 2,4-di--pentylphenoxy on the peripheral positions effectively reduced the aggregation of ZnPcs, improving the solubility of ZnPcs, and the simultaneous substitution on the peripheral and nonperipheral positions could achieve ZnPcs with different colors. From the calculation results, six low-aggregation ZnPcs were synthesized for the first time.

View Article and Find Full Text PDF

Breast cancer ranks as the second most widespread form of cancer globally. Currently, combination therapy is being actively employed in clinical practice to augment the efficiency of anticancer treatment. Hence, the objective of this study was to assess the therapeutic efficacy of a combination of femtosecond laser-based photodynamic therapy (PDT) utilizing two distinct photosensitizers (PSs), zinc phthalocyanine tetrasulfonate (ZnPcS) and α,β,χ,δ porphyrin-Tetrakis (1-methylpyridinium-4-yl) p-Toluenesulfonate porphyrin (TMPyP) in conjunction with doxorubicin chemotherapeutic agent, on mammary carcinomas experimentally induced in female mice using 7,12-dimethylbenz[a] anthracene (DMBA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!