PIKFYVE deficiency induces vacuole-like cataract via perturbing late endosome homeostasis.

Biochem Biophys Res Commun

Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China. Electronic address:

Published: December 2024

Phosphoinositide kinase, FYVE-type zinc finger containing (PIKFYVE) was recently identified as a causative gene for cataract. Pikfyve phosphatidylinositol phosphate kinase domain-deficient (pikfyve) zebrafish lens and PIKFYVE-inhibited human lens epithelial cells developed vacuoles, colocalized with late endosome marker RAB7. In this study, the pikfyvezebrafish with vacuole-like cataract underwent transcriptomic and proteomic analyses to explore the underlying mechanisms of vacuole formation. PIKFYVE-knockout and PIKFYVE-inhibited human lens epithelial cells with vacuoles further verified these omics results and rescued with Bafilomycin A1(Baf-A1) and U18666A. We discovered no significant differences in lysosomal fusion, but upregulation in acid hydrolase. The composition of late endosomal membrane was changed, and vacuolar ATPase and endosomal sorting complexes required for transport (ESCRT) at late endosome were upregulated. These changes are related with the late endosome homeostasis. Strikingly, vacuoles in human lens epithelial cells could be partially rescued by Baf-A1 and almost completely rescued by U18666A. Collectively, these findings suggest that vacuoles in pikfyve zebrafish lens and PIKFYVE-inhibited cells were colocalized with swollen late endosomes, and generated by perturbing late endosome homeostasis due to enhanced ESCRT mechanisms and decreased stability in late endosomal membrane. This study expands our understanding of the mechanisms underlying cataract development and reveals potentially effective therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2024.151123DOI Listing

Publication Analysis

Top Keywords

late endosome
20
endosome homeostasis
12
human lens
12
lens epithelial
12
epithelial cells
12
vacuole-like cataract
8
late
8
perturbing late
8
pikfyve zebrafish
8
zebrafish lens
8

Similar Publications

Von Willebrand factor (VWF) plays a critical role in hemostasis, and emerging evidence suggests its involvement in inflammation. Our study aimed to investigate the interaction between circulating plasma VWF and neutrophils (polymorphonuclear cells, PMNs), elucidate the fate of VWF after binding, and explore its impact on neutrophil behavior. Neutrophils were isolated from the whole blood of healthy volunteers, and their interaction with plasma VWF was examined ex vivo.

View Article and Find Full Text PDF

PIKFYVE deficiency induces vacuole-like cataract via perturbing late endosome homeostasis.

Biochem Biophys Res Commun

December 2024

Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China. Electronic address:

Phosphoinositide kinase, FYVE-type zinc finger containing (PIKFYVE) was recently identified as a causative gene for cataract. Pikfyve phosphatidylinositol phosphate kinase domain-deficient (pikfyve) zebrafish lens and PIKFYVE-inhibited human lens epithelial cells developed vacuoles, colocalized with late endosome marker RAB7. In this study, the pikfyvezebrafish with vacuole-like cataract underwent transcriptomic and proteomic analyses to explore the underlying mechanisms of vacuole formation.

View Article and Find Full Text PDF

Endosomal recycling is a branch of intracellular membrane trafficking that retrieves endocytosed cargo proteins from early and late endosomes to prevent their degradation in lysosomes. A key player in endosomal recycling is the Commander complex, a 16-subunit protein assembly that cooperates with other endosomal factors to recruit cargo proteins and facilitate the formation of tubulo-vesicular carriers. While the crucial role of Commander in endosomal recycling is well established, its molecular mechanism remains poorly understood.

View Article and Find Full Text PDF

Dysfunction of the endo-lysosomal intracellular Cholesterol transporter 2 protein (NPC2) leads to the onset of Niemann-Pick Disease Type C (NPC), a lysosomal storage disorder. Metabolic and homeostatic mechanisms are disrupted in lysosomal storage disorders (LSDs) hence we characterized a cellular model of NPC2 knock out, to assess alterations in organellar function and inter-organellar crosstalk between mitochondria and lysosomes. We performed characterization of lipid alterations and confirmed altered lysosomal morphology, but no overt changes in oxidative stress markers.

View Article and Find Full Text PDF

Manganese is a potent inducer of lysosomal activity that inhibits de novo HBV infection.

PLoS Pathog

January 2025

Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.

Sodium taurocholate co-transporting polypeptide (NTCP) has been identified as an entry receptor for hepatitis B virus (HBV), but the molecular events of the viral post-endocytosis steps remain obscure. In this study, we discovered that manganese (Mn) could strongly inhibit HBV infection in NTCP-reconstituted HepG2 cells without affecting viral replication. We therefore profiled the antiviral effects of Mn2+ in an attempt to elucidate the regulatory mechanisms involved in early HBV infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!