Background: Lipid metabolism, one of the three major metabolic processes, plays a crucial role in male fertility, particularly when lipid homeostasis is disrupted. Lipid droplets (LDs), cellular organelles that store lipids primarily in the form of triglycerides and cholesterol esters, serve as central hubs in lipid metabolism.The degradation of LDs is regulated by lipases and lipophagy.
Objective: : This review explores the various forms of lipophagy, its molecular mechanisms, and its critical role in male fertility. Specifically, it examines the association between lipophagy and male infertility, sexual dysfunction, and reproductive cancers.
Methods: : This review synthesizes current research on the molecular pathways regulating lipophagy, focusing on its impact on male reproductive health.
Results: : Lipophagy is essential for maintaining lipid homeostasis in male reproductive tissues. Dysfunction of lipophagy is associated with impaired sperm function, infertility, sexual dysfunction, and an increased risk of reproductive cancers in men.
Conclusion: : Lipophagy plays a pivotal role in regulating lipid metabolism and maintaining male fertility. It may serve as a potential therapeutic target for treating male reproductive disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/13813455.2024.2446840 | DOI Listing |
Hum Fertil (Camb)
December 2025
Instituto Superior Miguel Torga, Coimbra, Portugal.
Infertility is increasing globally, affecting one in six adults due to factors like delayed childbearing and lifestyle changes. Despite the recognition of the importance of increasing fertility awareness, levels remain low. This study evaluated the perceptions of 'FActs!', a serious game aimed at improving adolescents' fertility awareness.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Bratislava, Slovakia.
The microbiome-gut-testis axis has emerged as a significant area of interest in understanding testicular cancer, particularly testicular germ cell tumors (TGCTs), which represent the most common malignancy in young men. The interplay between the gut and testicular microbiomes is hypothesized to influence tumorigenesis and reproductive health, underscoring the complex role of microbial ecosystems in disease pathology. The microbiome-gut-testis axis encompasses complex interactions between the gut microbiome, systemic immune modulation, and the local microenvironment of the testis.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung, Taiwan.
Infertility affects around 8%-12% of reproductive-aged couples and is a major health concern. Both genetic and environmental factors influence male infertility. is a crucial testis-specific gene essential for the final differentiation of male germ cells and is strongly linked to male infertility due to numerous detected mutations.
View Article and Find Full Text PDFFront Genet
January 2025
The Affiliated Women's and Children's Hospital of Chengdu Medical College, Sichuan Provincial Woman's and Children's Hospital, Chengdu, China.
Introduction: Usually, patients with sY84 or sY86 deficiency present with azoospermia, but recent studies have shown that some males with partial AZFa deletions, including sY84 or sY86, exhibit normal fertility. Here, we reported a rare case of AZF deletion in a family, where both father and son exhibited a deletion at the sY86 site in the AZFa region and a partial deletion in the AZFc region.
Methods And Results: Detection was performed using classical multiplex polymerase chain reaction and the "Male AZF Full-region Detection" Panel, revealing specific deletions in AZFa: Yq11.
Front Endocrinol (Lausanne)
January 2025
Department of Obstetrics and Gynaecology, Assiut University, Assiut, Egypt.
Oxidative stress (OS) is established as a key factor in the etiology of both male and female infertility, arising from an imbalance between reactive oxygen species (ROS) production and the endogenous antioxidant (AOX) defenses. In men, OS adversely affects sperm function by inducing DNA damage, reducing motility, significantly impairing sperm vitality through plasma membrane peroxidation and loss of membrane integrity, and ultimately compromising overall sperm quality. In women, OS is implicated in various reproductive disorders, including polycystic ovary syndrome, endometriosis, and premature ovarian failure, leading to diminished oocyte quality, disrupted folliculogenesis, and poorer reproductive outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!