Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Carbon dots (CDs) as a new class of photoluminescent zero-dimension carbon nanoparticles have attracted significant research interests owing to their extraordinary opto-electro-properties and biocompatibility. So far, almost all syntheses of CDs require either heat treatment or exertion of high energy fields. Herein, a scalable room-temperature vortex fluidic method is introduced to the CDs synthesis using the angled vortex fluidic device (VFD). By judicious selection of the solvent, typical CDs precursor of phenylenediamine has been converted into high crystalline CDs through VFD processing. The VFD-synthesized CDs cover the full color spectrum from blue to red with the highest quantum yield of 45.6%. The synthesis shows that the dynamic thin liquid film generated by VFD spun at high rotational speed (7 - 9 k RPM) is able to induce cycloaddition reactions. The new method for CD synthesis is facile, occurring under ambient conditions in the VFD, potentially offering industrial scaling up of production of full color carbon dots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202402182 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!