Porous Nanoframe Based Plasmonic Structure With High-Density Hotspots for the Quantitative Detection of Gaseous Benzaldehyde.

Small

Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.

Published: January 2025

Owing to its high sensitivity, surface-enhanced Raman scattering (SERS) has immense potential for the identification of lung cancer from the variation in volatile biomarkers in the exhaled gas. However, two prevailing factors limit the application of SERS: 1) the adsorption of target molecules into SERS hotspots and 2) the detection specificity in multiple interference environments. To improve the density of the SERS hotspots, 3D Au@Ag-Au particles are prepared in a porous nanoframes (PPFs) based plasmonic structure, which facilitated a richer local electromagnetic field distribution among the Au nanocubic (NC) cores, Au-Ag porous nanoframes, and Au nanoparticles, thereby promoting the adsorption probability of gaseous aldehydes into the hotspots. L-cysteines (l-Cys)-modified 3D Au@Ag-Au PPFs are proposed as a benzaldehyde (BA) gas detection carrier to accurately detect biomarkers in complex exhaled gases and eliminate interference from other components. Unlike the conventional use of 4-aminothiophenol as a linker molecule, the novel L-Cys-modified SERS substrate is sensitive toward the aldehyde molecules and immune to other volatile organic compounds (ethanol, cyclohexane, toluene, etc.). Furthermore, a medical mask consisting of this SERS substrate is designed to realize intelligent detection of gaseous BA concentrations assisted by a machine learning algorithm.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202408670DOI Listing

Publication Analysis

Top Keywords

based plasmonic
8
plasmonic structure
8
detection gaseous
8
sers hotspots
8
porous nanoframes
8
sers substrate
8
sers
6
porous nanoframe
4
nanoframe based
4
structure high-density
4

Similar Publications

Porous Nanoframe Based Plasmonic Structure With High-Density Hotspots for the Quantitative Detection of Gaseous Benzaldehyde.

Small

January 2025

Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.

Owing to its high sensitivity, surface-enhanced Raman scattering (SERS) has immense potential for the identification of lung cancer from the variation in volatile biomarkers in the exhaled gas. However, two prevailing factors limit the application of SERS: 1) the adsorption of target molecules into SERS hotspots and 2) the detection specificity in multiple interference environments. To improve the density of the SERS hotspots, 3D Au@Ag-Au particles are prepared in a porous nanoframes (PPFs) based plasmonic structure, which facilitated a richer local electromagnetic field distribution among the Au nanocubic (NC) cores, Au-Ag porous nanoframes, and Au nanoparticles, thereby promoting the adsorption probability of gaseous aldehydes into the hotspots.

View Article and Find Full Text PDF

This study reports the synthesis of plasmonic hot nanogap networks-in-triangular nanoframes (NITNFs), featuring narrow intraparticle nanogap networks embedded within triangular nanoframes. Starting from Au nanotriangles, Pt NITNFs are synthesized through a cascade reaction involving simultaneous Pt deposition and Au etching in a one-pot process. The Pt NITNFs are then transformed into plasmonically active Au NITNFs via Au coating.

View Article and Find Full Text PDF

Surface plasmon resonance (SPR) is normally used to measure the kinetic parameters of biomolecular interactions between a molecule immobilized on a gold surface and another one flowing in a microfluidic channel above the surface. During the SPR measurements, convection-diffusion phenomena occur inside the microfluidic channels, but they are generally minimized by appropriate experimental setup in order to obtain diffusion free kinetic parameters of the molecular interactions. In this work, for the first time, a commercial SPR apparatus has been used to obtain non canonical scientific parameters.

View Article and Find Full Text PDF

The holographic technique is one of the simplest methods for designing antennas based on metasurface. This paper presents a spoof surface plasmon polariton (SSPP) leaky-wave antenna (LWA) based on the concept of impedance modulated metasurfaces by the anisotropic holographic technique. Instead of parasitic elements, anisotropic SSPP elements are exploited to achieve radiation with circular polarization.

View Article and Find Full Text PDF

An ultrasensitive angular interrogation metasurface sensor based on the TE mode surface lattice resonance.

Microsyst Nanoeng

January 2025

National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Beijing, 100871, PR China.

The localized surface plasmon resonance metasurface is a research hotspot in the sensing field since it can enhance the light-matter interaction in the nanoscale, but the wavelength sensitivity is far from comparable with that of prism-coupled surface plasmon polariton (SPP). Herein, we propose and demonstrate an ultrasensitive angular interrogation sensor based on the transverse electric mode surface lattice resonance (SLR) mechanism in an all-metal metasurface. In theory, we derive the sensitivity function in detail and emphasize the refraction effect at the air-solution interface, which influences the SLR position and improves the sensitivity performance greatly in the wide-angle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!