Human hearing cannot sensitively detect sounds below 100 Hz, which can affect the physical well-being and lead to dizziness, headaches, and nausea. Piezoelectric acoustic sensors still lack sensitivity to low-frequency sounds owing to the low piezoelectric coefficient or high elastic modulus of materials. The low elastic modulus and substantial piezoelectric coefficient of molecular ferroelectric materials make them excellent candidates for acoustic sensors. In this study, the molecular ferroelectric, [(CH)NCHCl]CdCl, is used as a piezoelectric active layer in the construction of a piezoelectric acoustic sensor for low-frequency sound detection. The sensor exhibits high sensitivity (47.43 mV Pa cm) at 87 Hz, with an excellent level of frequency resolution (up to 0.1 Hz). This facilitates the accurate discrimination and detection of low-frequency sounds, which is suitable for noise detection applications. The sensor differentiates between various musical instruments and heartbeats, and recognizes audio signals. This study highlights the potential of molecular ferroelectric materials in piezoelectric acoustic device applications, including noise detection, health monitoring, and human-computer interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202409251 | DOI Listing |
Adv Mater
January 2025
School of Energy, School of Optoelectronic Science and Engineering, School of Biology and Basic Medical Sciences, School of Physical Science and Technology, Soochow University, Suzhou, 215000, P. R. China.
Human hearing cannot sensitively detect sounds below 100 Hz, which can affect the physical well-being and lead to dizziness, headaches, and nausea. Piezoelectric acoustic sensors still lack sensitivity to low-frequency sounds owing to the low piezoelectric coefficient or high elastic modulus of materials. The low elastic modulus and substantial piezoelectric coefficient of molecular ferroelectric materials make them excellent candidates for acoustic sensors.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Kotelnikov Institute of Radio Engineering and Electronics of RAS, Moscow 125009, Russia.
An important technical task is to develop methods for recording the phase transitions of water to ice. At present, many sensors based on various types of acoustic waves are suggested for solving this challenge. This paper focuses on the theoretical and experimental study of the effect of water-to-ice phase transition on the properties of Lamb and quasi shear horizontal (QSH) acoustic waves of a higher order propagating in different directions in piezoelectric plates with strong anisotropy.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Electrical and Computer Engineering Department, Northeastern University, Boston, MA 02115, USA.
Magnetoelectric (ME) devices combining piezoelectric and magnetostrictive materials have emerged as powerful tools to miniaturize and enhance sensing and communication technologies. This paper examines recent developments in bulk acoustic wave (BAW) and surface acoustic wave (SAW) ME devices, which demonstrate unique capabilities in ultra-sensitive magnetic sensing, compact antennas, and quantum applications. Leveraging the mechanical resonance of BAW and SAW modes, ME sensors achieve the femto- to pico-Tesla sensitivity ideal for biomedical applications, while ME antennas, operating at acoustic resonance, allow significant size reduction, with high radiation gain and efficiency, which is suited for bandwidth-restricted applications.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China.
High-performance acoustic resonators based on single-crystalline piezoelectric thin films have great potential in wireless communication applications. This paper presents the modeling, fabrication, and characterization of laterally excited bulk resonators (XBARs) utilizing the suspended ultra-thin (~420 nm) LiTaO (LT, with 42° YX-cut) film. The finite element analysis (FEA) was performed to model the LT-based XBARs precisely and to gain further insight into the physical behaviors of the acoustic waves and the loss mechanisms.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Mechanical Engineering, North Carolina A & T State University,1601 E. Market Street, Greensboro, NC 27411, USA.
Damage in composite laminates evolves through complex interactions of different failure modes, influenced by load type, environment, and initial damage, such as from transverse impact. This paper investigates damage growth in cross-ply polymeric matrix laminates under tensile load, focusing on three primary failure modes: transverse matrix cracks, delaminations, and fiber breaks in the primary loadbearing 0-degree laminae. Acoustic emission (AE) techniques can monitor and quantify damage in real time, provided the signals from these failure modes can be distinguished.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!