The rapid development of flexible electronics has led to unprecedented social and economic improvements. But conventional power devices cannot adapt to the advances of flexible electronics. Triboelectric nanogenerators (TENGs) have been used as robust power sources to transform ambient mechanical energy into electricity, thus meeting the power requirements of flexible electronics. Hydrogels are widely used for soft bioelectronics owing to the decent stretchability and biocompatibility. This Review presents the recent progress in the use of hydrogels for TENGs and self-powered hydrogel bioelectronics, including hydrogel synthesis, hydrogel TENGs fabrication, and their applications in wearable electricity generation, self-powered active sensing, and therapeutics. Hydrogel-enabled TENGs are emerging as a novel form of soft bioelectronics. We provided a critical analysis of hydrogel TENGs and insights into future opportunities and directions of this rapidly evolving field. These advancements will push the boundaries of hydrogel bioelectronics and contribute to the development of personalized healthcare solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.4c01709 | DOI Listing |
Chem Soc Rev
January 2025
Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N1N4, Canada.
Currently, organic photocatalyst-based photocatalysis has garnered significant attention as an environmentally friendly and sustainable reaction system due to the preferable structural flexibility and adjustable optoelectronic features of organic photocatalysts. In addition, π-π interactions, as one of the common non-bonded interactions, play an important role in the structure and property adjustments of organic photocatalysts due to their unique advantages in modulating the electronic structure, facilitating charge migration, and influencing interfacial reactions. However, studies summarizing the relationship between the π-π interactions of organic photocatalysts and their photocatalytic performance are still rare.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China.
Deep eutectic solvent (DES)-based conductive hydrogels have attracted great interest in the building of flexible electronic devices that can be used to replace conventional temperature-intolerant hydrogels and expensive ionic liquid gels. However, current DES-based conductive hydrogels obtained have limited mechanical strength, high hysteresis, and poor microdeformation sensitivity of the assembled sensors. In this work, a rubber-like conductive hydrogel based on -acryloylglycinamide (NAGA) and DES (acetylcholine chloride/acrylamide) has been synthesized by a one-step method.
View Article and Find Full Text PDFJ Voice
January 2025
Department of Otolaryngology - Head and Neck Surgery, School of Medicine, Louisiana State University, Shreveport, LA 71103.
Objective(s): To assess the prevalence of Helicobacter pylori in Reinke's edema patients. To evaluate and compare the disease severity of patients who are H. pylori positive with those who are H.
View Article and Find Full Text PDFZ Evid Fortbild Qual Gesundhwes
January 2025
Department of Prevention and Evaluation, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany; Leibniz ScienceCampus Digital Public Health Bremen (LSC DiPH), Bremen, Germany; Faculty of Human and Health Sciences, University of Bremen, Bremen, Germany.
Introduction: The increasing digitalization of the healthcare system makes it possible to provide medical services using digital technologies without direct patient-provider contact. This study aimed to investigate 1) the use and acceptance of video consultation and 2) factors associated with the use of video consultation.
Methods: A cross-sectional online survey was conducted in February 2023.
Int J Biol Macromol
January 2025
Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, PO Box 26, Bahir Dar, Ethiopia; Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland.
With the worldwide transformation to a circular and low-carbon economy, the demand for sustainable materials has skyrocketed in recent years. Of various methods, sustainable and biodegradable biopolymers derived from renewable bioresources have received significant interest. Synthetic biodegradable biopolymers offer tremendous advantages over natural biodegradable biopolymers due to their stability, flexibility, and a wide range of achievable properties to fit several applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!