Engineered 3D DNA Crystals: A Molecular Design Perspective.

Small Methods

Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.

Published: January 2025

Recent advances in biomolecular self-assembly have transformed material science, enabling the creation of novel materials with unparalleled precision and functionality. Among these innovations, 3D DNA crystals have emerged as a distinctive class of macroscopic materials, engineered through the bottom-up approach by DNA self-assembly. These structures uniquely combine precise molecular ordering with high programmability, establishing their importance in advanced material design. This review delves into the molecular design of engineered 3D DNA crystals, classifying current crystal structures based on "crystal bond orientations" and examining key aspects of in-silico molecular design, self-assembly, and crystal modifications. The functionalization of 3D DNA crystals for applications in crystallization scaffolding, biocatalysis, biosensing, electrical and optical devices, as well as in the emerging fields of DNA computing and data storage are explored. Finally, the ongoing challenges are addressed and future directions to advance the field of engineered 3D DNA crystals are proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202401455DOI Listing

Publication Analysis

Top Keywords

dna crystals
20
engineered dna
12
molecular design
12
dna
6
crystals
5
engineered
4
molecular
4
crystals molecular
4
design
4
design perspective
4

Similar Publications

Examples of long-range gene regulation in bacteria are rare and generally thought to involve DNA looping. Here, using a combination of biophysical approaches including X-ray crystallography and single-molecule analysis for the KorB-KorA system in Escherichia coli, we show that long-range gene silencing on the plasmid RK2, a source of multi-drug resistance across diverse Gram-negative bacteria, is achieved cooperatively by a DNA-sliding clamp, KorB, and a clamp-locking protein, KorA. We show that KorB is a CTPase clamp that can entrap and slide along DNA to reach distal target promoters up to 1.

View Article and Find Full Text PDF

We investigate the impact of poly adenine (poly-A) sequences on the type and stability of liquid crystalline (LC) phases formed by concentrated solutions of gapped DNA (two duplex arms bridged by a flexible single strand) using synchrotron small-angle X-ray scattering and polarizing optical microscopy. While samples with mixed sequence form layered (smectic) phases, poly-A samples demonstrate a columnar phase at lower temperatures (5-35 °C), not previously observed in GDNA samples, and a smectic-B phase of exceptional stability at higher temperatures (35-65 °C). We present a model that connects the formation of these LC phases with the unique characteristics of poly-A sequences, which manifest in various biological contexts, including DNA condensation and nucleosome formation.

View Article and Find Full Text PDF

High-affinity promotor binding of YhaJ mediates a low signal leakage for effective DNT detection.

Front Microbiol

January 2025

Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea.

The YhaJ transcription factor responds to dinitrophenol (DNT) and its metabolic products. The YhaJ-involving cells have been exploited for whole-cell biosensors of soil-buried landmines. Such biosensors would decrease the damage to personnel who approach landmine fields.

View Article and Find Full Text PDF

Self-assembly of chromatic patchy particles with tetrahedrally arranged patches.

Soft Matter

January 2025

Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria-Curie-Sklodowska University in Lublin, Pl. M Curie-Sklodowskiej 3, 20-031 Lublin, Poland.

The achievement of selectivity in the formation of cubic diamond is challenging due to the emergence of competing phases such as its hexagonal polymorph or clathrates possessing similar free energy. Although both polymorphs exhibit a complete photonic bandgap, cubic diamond exhibits it at lower frequencies than the hexagonal counterpart, positioning it as a promising candidate for photonic applications. Herein, we demonstrate that the 1 : 1 mixture of identical patchy particles cannot selectively form the cubic diamond polymorph due to the frustrations present in the system that are manifested in the primary adsorption layer and propagate as the film grows.

View Article and Find Full Text PDF

Two newly synthesized ligands, 1-((2-(4-(4-methoxyphenyl)thiazol-2-yl)hydrazono)methyl)naphthalen-2-ol (HL1) and 1-((2-(4-(naphthalen-1-yl)thiazol-2-yl)hydrazono)methyl)naphthalen-2-ol (HL2) were characterized using spectroscopy and single X-ray crystallography. Both belong to triclinic systems with space groups P21/c (HL1) and P-1 (HL2), exhibiting planar structures. Biological assays revealed significant antitumor activity, with HL2 showing significant antitumor activity against HepG2 cells (IC: 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!